Skip to main content

Advertisement

Log in

Hydrothermal processing of materials: past, present and future

  • Novel Routes of Advanced Materials Processing and Applications
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hydrothermal technique provides an excellent possibility for processing of advanced materials whether it is bulk single crystals, or fine particles, or nanoparticles. The advantages of hydrothermal technology have been discussed in comparison with the conventional methods of materials processing. The current trends in hydrothermal materials processing has been described in relation to the concept of soft solution processing, as a single-step low energy consuming fabrication technique. Also some recent developments in multi-energy processing of materials such as microwave-hydrothermal, mechanochemical-hydrothermal, electrochemical-hydrothermal, sonar-hydrothermal, etc. have been discussed. An overview of the past, present and future perspective of hydrothermal technology as a tool to fabricate advanced materials has been given with appropriate examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Byrappa K (ed) (1990) Hydrothermal growth of crystals. Prog Cryst Grow Charact 21

  2. Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology. Noyes Publications, NJ, USA

    Google Scholar 

  3. Schafthaul KFE (1845) Gelehrte Anzeigen Bayer Akal 20:557

    Google Scholar 

  4. Morey GW, Niggli P (1913) J Am Chem Soc 35:1086

    Article  CAS  Google Scholar 

  5. Bayer KJ (1887) cited by HABASHI F In: A textbook of hydrometallurgy. Libraire Universitaire du Quebec, Canada (1993), p 10

  6. Byrappa K (2005) In: Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, London

  7. Jelinski LW, Graedal TE, Laudise RA, McCall DW, Patel CKN (1992) Proc Natl Acad Sci 89:793

    Article  CAS  Google Scholar 

  8. Lencka MM, Andreko A, Riman RE (1995) J Am Ceram Soc 78:2609

    Article  CAS  Google Scholar 

  9. Hao Y, Teja AS (2003) J Mater Res 18:415

    Article  CAS  Google Scholar 

  10. Riman RE, Suchanek WL, Byrappa K, Chen CW, Shuk P, Oakes CS (2002) Solid State Ionics 151:393

    Article  CAS  Google Scholar 

  11. (a) Byrappa K, Yoshimura M (eds) (2006) A Novel Method of Advanced Materials Processing. J Mater Sci 41, pp 1294–1682. (b) Yamasaki N (2003) J Ceram Soc Jpn 111:709

  12. Roy R (2006) Solvothermal as one example of multi-energy processing – history and current status, Plenary Talk, ISHR & ICSTR 2006, Sendai, Japan August 5–9

  13. Lester E, Blood P, Li J, Poliakoff M (2006) Reactor geometry and supercritical water reactions, Invited Talk, ISHR & ICSTR 2006, Sendai, Japan August 5–9

  14. Varma R (2006) In: Immediate energy savings via microwave usage in major materials technologies (D. Agarwal). The Spectrum 1:2

  15. Somiya S (ed) (1983) Proc. Ist international symposium on hydrothermal reactions, 1982. Gakujutsu Bunken Fukyukai Publications, Tokyo, Japan, p 965

  16. Roy R (1994) J Solid State Chem 111:11

    Article  CAS  Google Scholar 

  17. Roy R (1996) In: Proc. workshop on solvothermal and hydrothermal reactions. Sun Mess Kagawa, Japan, Jan. 22–24

  18. Corliss JB (1979) J Geol Soc Lond 136:621

    Article  Google Scholar 

  19. Ekimov AI, Efros AL, Onushchenko AA (1985) Solid State Commun 56:921

    Article  CAS  Google Scholar 

  20. Mann S (ed) (1996) Biomimetic materials chemistry. Wiley-VCH, Germany

    Google Scholar 

  21. Yoshimura M (1998) J Mater Res 13:796

    Article  CAS  Google Scholar 

  22. Yoshimura M, Suchanek WL, Byrappa K (2000) MRS Bull USA 25:17

    CAS  Google Scholar 

  23. Yoshimura M (2006) J Ceram Soc Jpn 114:888; J Mater Sci 41:1299

    Google Scholar 

  24. Demyanets LN, Li LE, Uvarova TG (2006) J Mater Sci 41:1439

    Article  CAS  Google Scholar 

  25. Ehrentraut D, Sato H, Kagamitani Y, Sato H, Yoshikawa A, Fukuda T (2006) Prog Cryst Grow Charact Mat 52:280

    Article  CAS  Google Scholar 

  26. Kortunova EV, Nikolaeva NG, Chvanski PP, Maltsev VV, Volkova EA, Koporulina EV, Leonyuk NI, Kuech TF (2007) J Mater Sci (this issue)

  27. Sekiguchi T, Miyashita S, Obara K, Shishido T, Sakagami N (2000) J Crystal Growth 214/215:72

    Article  CAS  Google Scholar 

  28. DiLeo L, Romano D, Schaeffer L, Gersten B, Foster C, Gelabert MC (2004) J Crystal Growth 271:65

    Article  CAS  Google Scholar 

  29. Wang B, Callahan MJ, Bouthillette LO, Xu C, Suscavage MJ (2006) J Crystal Growth 287:381

    Article  CAS  Google Scholar 

  30. Ohara S, Mousavand T, Sasaki T, Umetsu M, Naka T, Adschiri T (2007) J Mater Sci (in press/this special edition)

  31. Hou Y, Yang M, Pang G, Feng S (2007) J Mater Sci (in press/this special edition)

  32. Dem’Yanets LN, Li L, Uvarova T, Mininzon Yu (2007) J Mater Sci (in press/this special edition)

  33. Yuan F, Hu P, Yu L, Li S, Ke J (2007) J Mater Sci (in press/in this special edition)

  34. Palmier D, Goiffon A, Capelle B, Detaint J, Philippot E (1996) J Crystal Growth 166:347

    Article  CAS  Google Scholar 

  35. Gleichmann H, Richert H, Hergt R, Barz R-U, Grassl M, Fornert P (2001) Cryst Res Technol 36:1181

    Article  CAS  Google Scholar 

  36. Mukai T, Nakamura S (1999) Jpn J Appl Phys 38:5735

    Article  CAS  Google Scholar 

  37. Hashimoto T, Fujito K, Saito M, Speck JS, Nakamura S (2005) Jpn J Appl Phys 44:L1570

    Article  CAS  Google Scholar 

  38. Wang B, Callahan MJ, Rakes KD, Bouthillette LO, Wang S-Q, Bliss DF, Kolis JW (2006) J Crystal Growth 287:367

    Article  CAS  Google Scholar 

  39. Ehrentraut D, Hoshino N, Kagamitani Y, Yoshikawa A, Fukuda T, Itoh H, Kawabata S (2007) J Mater Chem 17:886

    Article  CAS  Google Scholar 

  40. Demianets LN, Kostomarov DV (2001) Ann Chim Sci Mater 26:193

    Article  CAS  Google Scholar 

  41. Demazeau G (2007) J Mater Sci (in press/this special edition)

  42. Ehrentraut D, Kagamitani Y, Yoshikawa A, Hoshino N, Itoh H, Kawabata S, Fujii K, Yao T (2007) J Mater Sci (in press/this special edition)

  43. Callahan M, Wang BG, Rakes K, Bliss D, Bouthillette L, Suscavage M, Wang SQ (2006) J Mater Sci 41:1399

    Article  CAS  Google Scholar 

  44. Kong H, Wang J, Zhang H, Yin X, Zhang S, Liu Y, Cheng X, Gao L, Hu X, Jiang M (2003) J Crystal Growth 254:360

    Article  CAS  Google Scholar 

  45. Jang MC, Joo K, Auh KH (2000) J Ceram Process Res 1:1

    Google Scholar 

  46. Zhang SJ, Wang Q, Tian Z, Yin X, Zhang H, Li Y, Li S (2005) Opt Laser Technol 37:608

    Article  CAS  Google Scholar 

  47. Shimamura K, Takeda H, Kohno T, Fukuda T (1996) J Crystal Growth 163:388

    Article  CAS  Google Scholar 

  48. Uda S, Inaba H, Harada J, Hoshikawa K (2004) J Crystal Growth 271:229

    Article  CAS  Google Scholar 

  49. Uda S, Wang SQ, Konishi N, Inaba H, Harada J (2005) J Crystal Growth 275:251

    Article  CAS  Google Scholar 

  50. Assoud M, Boy JJ, Yamni K, Albizane A (2005) J Phys IV France 126:47

    CAS  Google Scholar 

  51. Byrappa K, Adschiri T (2007) Prog Cryst Grow Charact Mat 53:117

    Article  CAS  Google Scholar 

  52. Morey GW (1953) J Am Ceram Soc 36:279

    Article  CAS  Google Scholar 

  53. Mitsuda T (1980) Ceram Jpn 15:184

    CAS  Google Scholar 

  54. Somiya S (2006) J Mater Sci 41:1307

    Article  CAS  Google Scholar 

  55. Lobachev AN (ed) (1973) Crystallization processes under hydrothermal conditions. Consultants Bureau, New York, p 225

    Google Scholar 

  56. Somiya S (ed) (1990) Hydrothermal preparation of fine powders, advanced ceramics III. Elsevier Applied Science Publishers, UK

    Google Scholar 

  57. Kajiyoshi K, Tomono K, Hamaji Y, Kasanami T, Yoshimura M (1995) J Am Ceram Soc 78:1521

    Article  CAS  Google Scholar 

  58. Cho WS, Yashima M, Kakihana M, Kudo A, Sakata T, Yoshimura M (1997) J Am Ceram Soc 80:765

    Article  CAS  Google Scholar 

  59. Yoshimura M, Yoo SE, Hayashi M, Ishizawa N (1989) Jpn J Appl Phys 28:L2007

    Article  CAS  Google Scholar 

  60. Cho WS, Yoshimura M (1997) J Mater Res 12:833

    Article  CAS  Google Scholar 

  61. Ishizawa N, Yoo SE, Hayashi M, Yoshimura M (1990) Mater Res Soc Proc 200:57

    CAS  Google Scholar 

  62. Ishizawa N, Banno H, Hayashi M, Yoo SE, Yoshimura M (1990) J Appl Phys 29:2467

    Article  CAS  Google Scholar 

  63. Komarneni S (2003) Curr Sci 85:1730

    CAS  Google Scholar 

  64. Lee JH, Kumagai N, Watanabe T, Yoshimura M (2002) Solid State Ionics 151:41

    Article  CAS  Google Scholar 

  65. Komarneni S, Fregeau E, Breval E, Roy R (1988) J Am Ceram Soc 71:26

    Article  Google Scholar 

  66. Suchanek WL, Byrappa K, Shuk P, Riman RE, Tenhuisen KS, Janas VF (2004) Biomaterials 25:4647

    Article  CAS  Google Scholar 

  67. Sakamoto N, Fujino T, Watanabe T, Yoshimura M (2006) J Mater Sci 41:1363

    Article  CAS  Google Scholar 

  68. Mousavand T (2007) Ph.D. Thesis, Tohoku University, Sendai, Japan

  69. Faraday M (1857) Philos Trans R Soc London 147:145

    Article  Google Scholar 

  70. Von Chroustshoff K (1873) Ann Chem 3:281

    Google Scholar 

  71. Morey GW (1953) J Am Ceram Soc 36:279

    Article  CAS  Google Scholar 

  72. Hannay JB (1880) Proc Royal Soc London 30:178

    Article  Google Scholar 

  73. Spezia G (1900) Atti Accad Sci Torino 35:95

    Google Scholar 

  74. Yanagisawa K, Yamasaki N (1991) J Mater Sci 26:473

    Article  CAS  Google Scholar 

  75. Komarneni S, Roy R, Li QH (1992) Mater Res Bull 27:1393

    Article  CAS  Google Scholar 

  76. Yu SH, Qian YT (2006) In: Adachi M, Lockwood DJ (eds) Nanostructure science and technology, self-organized nanoscale materials. John Wiley & Sons, USA

    Google Scholar 

  77. Demazeau G (1994) In: Proc. Ist international conference on solvothermal reactions, Takamatsu, Japan, Dec. 5–7

  78. Adschiri T, Arai K (2002) In: Sun Y-P (ed) Supercritical fluid technology in materials science and engineering. Marcel Dekker Inc., New York, p 311

    Google Scholar 

  79. Byrappa K, Ohara S, Adschiri T (2007) Adv Drug Deliv Rev (in press)

  80. Zhang J, Ohara S, Umetsu M, Naka T, Hatakeyama Y, Adschiri T (2007) Adv Mater 19:203

    Article  CAS  Google Scholar 

  81. Yu TY, Joo J, Park YI, Hyeon TW (2005) Angew Chem Int Ed 44:7411

    Article  CAS  Google Scholar 

  82. Adschiri T, Mousavand T, Takami S, Umetsu M, Ohara S, Naka T, Tsukada T (2005) In: Wakayama H (ed) Materials chemistry in supercritical fluids. Research Signpost, India, p 79

    Google Scholar 

  83. Wang H, Zhu JJ, Zhu JM, Liao XH, Xu S, Ding T, Chen HY (2002) Phys Chem Chem Phys 4:3794

    Article  CAS  Google Scholar 

  84. Taniguchi T, Watanabe T, Ahniyaz A, Yoshimura M (2007) J Am Ceram Soc (submitted)

  85. Ahniyaz A, Watanabe T, Yoshimura M (2005) J Phys Chem B 109:6136

    Article  CAS  Google Scholar 

  86. Kim CK, Lee JH, Katoh S, Murakami R, Yoshimura M (2001) Mater Res Bull 36:2241

    Article  CAS  Google Scholar 

  87. Suchanek WL, Shuk P, Byrappa K, Riman RE, Tenhuisen KS, Janas VF (2002) Biomaterials 2–3:699

    Article  Google Scholar 

  88. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382:607

    Article  CAS  Google Scholar 

  89. Alivisatos AP, Johnson KP, Peng XG, Wilson TE, Loweth CJ, Bruchez M, Schultz PG (1996) Nature 382:609

    Article  CAS  Google Scholar 

  90. Komarneni S (2007) J Mater Sci (this issue)

  91. Ijima S (1991) Nature 354:56

    Article  Google Scholar 

  92. Katayama K, Yao H, Nakanishi F, Doi H, Saegusa A, Okuda N, Yamada T (1998) Appl Phys Lett 73:102

    Article  CAS  Google Scholar 

  93. Yakobson BI, Smalley RE (1997) Am Sci 85:324

    Google Scholar 

  94. Ajayam PM, Ebbesen TW (1997) Rep Prog Phys 60:1025

    Article  Google Scholar 

  95. Polizu S, Savadogo O, Poulin P, Yahia L (2006) J Nanosci Nanotechnol 6:1883

    Article  CAS  Google Scholar 

  96. Rojas-Chapana JA, Giersig M (2006) J Nanosci Nanotechnol 6:316

    CAS  Google Scholar 

  97. Mattson MP, Haddon RC, Rao AM (2000) J Mol Neurosci 14:175

    Article  CAS  Google Scholar 

  98. Basavalingu B, Calderon Moreno JM, Byrappa K, Gogotsi Yu, Yoshimura M (2001) Carbon 39:1763

    Article  CAS  Google Scholar 

  99. Basavalingu B, Byrappa K, Madhusudan P, Dayananda AS, Yoshimura M (2006) J Mater Sci 41:1465

    Article  CAS  Google Scholar 

  100. Calderon-Moreno JM, Yoshimura M (2001) J Am Chem Soc 123:741

    Article  CAS  Google Scholar 

  101. (a) Gogotsi Yu, Libera JA, van Groos AFK, Yoshimura M (2000) In: Yanagisawa K, Feng Q (eds) Proc. Joint ISHR and ICSTR – 2000, p 350. (b) Gogosti Yu, Libera JA, Yoshimura M (2000) J Mater Res 15:2591

  102. (a) Srikantaswamy S, Calderon-Moreno JM, Yoshimura M (2002) J Mater Res 17:734. (b) Suchanek WL, Libera JA, Gogotsi Yu, Yoshimura M (2001) J Solid State Chem 160:184

    Google Scholar 

  103. Sujaridworakun P, Pongkao D, Ahniyaz A, Yamakawa Y, Watanabe T, Yoshimura M (2005) J Nanosci Nanotechnol 5:875

    Article  CAS  Google Scholar 

  104. Byrappa K, Subramani AK, Ananda S, Lokanatha Rai KM, Sunitha MH, Basavalingu B, Soga K (2006) J Mater Sci 41:1355

    Article  CAS  Google Scholar 

  105. Dayananda AS, Sajan CP, Basavalingu B, Byrappa K, Soga K, Yoshimura M (2007) J Mater Sci (this issue)

  106. Song SW, Fujita H, Yoshimura M (2002) Adv Mater 14:268

    Article  CAS  Google Scholar 

  107. Teranishi R, Fujiwara T, Watanabe T, Yoshimura M (2002) Solid State Ionics 151:97

    Article  CAS  Google Scholar 

  108. Watanabe T, Wang H, Yamakawa Y, Yoshimura M (2006) Carbon 44:799

    Article  CAS  Google Scholar 

  109. Sengupta SK, Singh R, Srivastava AK (1998) J Electrochem Soc 145:2209

    Article  CAS  Google Scholar 

  110. Kakihana M, Yoshimura M (1999) Bull Chem Soc Japan 72:1427

    Article  CAS  Google Scholar 

  111. Tomita K, Petrykin V, Kobayashi M, Shiro M, Yoshimura M, Kakihana M (2006) Angew Chem Int Ed 45:2378

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yoshimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimura, M., Byrappa, K. Hydrothermal processing of materials: past, present and future. J Mater Sci 43, 2085–2103 (2008). https://doi.org/10.1007/s10853-007-1853-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1853-x

Keywords

Navigation