Skip to main content
Log in

Solvothermal reactions: an original route for the synthesis of novel materials

  • Novel Routes of Advanced Materials Processing and Applications
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Twenty years after the first development of solvothermal reactions, it appears important through the last research activities to trace the future trends taking into account their potentialities and the different economical constraints. During these last 20 years solvothermal reactions have been mainly used from preparing micro- or nanoparticles with different morphologies. Due to the importance to dispose of new materials for developing either basic research or industrial applications, such a presentation will be only focussed on the potentialities of solvothermal reactions in materials synthesis. Solvothermal reactions are mainly characterized by different chemical parameters (nature of the reagents and of the solvent) and thermodynamical parameters (in particular temperature, pressure). (a) The selection of the composition of the solvent opens new research areas for stabilizing materials belonging to different classes of materials (alloys, oxides, nitrides, sulphides…). (b) The mild temperature conditions generally used are able to improve chemical diffusion and reactivity in order to help the preparation of specific materials at the frontier between either different classes of inorganic materials (oxides-nitrides, nitrides-halides…) or inorganic/organic, inorganic/biologic frameworks. (c) The high pressure conditions, due to the small conveyed energy compared to temperature, allow also to stabilize metastable frontier materials (geo-inspired or bio-inspired materials). (d) In the future, taking into account, from one side: the economical and the environmental constraints, and from the other: the industrial demand of materials characterized by specific physical, chemical and biological properties, the potential developments of solvothermal processes will be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Habashi F (2005) Hydrometallurgy 79:15

    CAS  Google Scholar 

  2. Goranson RW (1931) Am J Sci 22:481

    Article  CAS  Google Scholar 

  3. Hosaka M (1991) Prog Cryst Growth Charact Mater 21:71

    CAS  Google Scholar 

  4. Demazeau G (1999) J Mater Chem 9:15

    CAS  Google Scholar 

  5. Feng S, Xu R (2001) Acc Chem Res 34:239

    CAS  Google Scholar 

  6. Demianets LN (1990) Prog Crystal Growth Charact 21:299

    Google Scholar 

  7. Rabenau A, Rau H (1969) Philips Tech Rev 30:89

    CAS  Google Scholar 

  8. Gogotsi YG, Yoshimura M (1994) Nature 367:628

    CAS  Google Scholar 

  9. Yamasaki N, Yanagisawa K, Nishioka M, Nakahara S (1986) J Mater Sci Lett 5:355

    Google Scholar 

  10. Rajamathi M, Seshadri R (2002) Curr Opin Solid State Mater Sci 6:337

    CAS  Google Scholar 

  11. Rabenau A (1985) Angew Chem Int Ed Engl 24:1026

    Google Scholar 

  12. Yoshimura M (1998) J Mater Res 13:796

    CAS  Google Scholar 

  13. Riman RE, Suchanek NL, Lencka MM (2002) Ann Chim Sci Mater 27:15

    CAS  Google Scholar 

  14. Byrappa K, Yoshimura M (2006) Handbook of hydrothermal technology. Williams Andrews, LLC/Noyes Publications Park-Ridge, NJ

  15. Yu SH (2001) J Ceram Soc Jpn 109:565

    Google Scholar 

  16. Yoshimura M, Suchanek W (1997) Solid State Ionics 98:197

    CAS  Google Scholar 

  17. Komarneni S, Roy R, Li QH (1992) Mater Res Bull 27:1393

    CAS  Google Scholar 

  18. Wang Q, Pan D, Jiang S, Ji X, An L, Jiang B (2006) J Cryst Growth 286:83

    CAS  Google Scholar 

  19. Li B, Xie Y, Huang JX, Su HL, Qian YT (1999) J Solid State Chem 146:47

    CAS  Google Scholar 

  20. Jia DJ, Zhang Y, Dai J, Zhu QY, Gu XM (2004) J Solid State Chem 177:2476

    Google Scholar 

  21. Li B, Xie Y, Huang H, Qian Y (1999) Adv Mater 11:1456

    CAS  Google Scholar 

  22. Hama T, Ihara T, Sato H (1991) Sol Energy Mater 23:380

    CAS  Google Scholar 

  23. Zunger A, Wagner S, Petroff PM (1993) J Electron Mater 22:1

    Google Scholar 

  24. Lu J, Qi P, Peng Y, Meng Z, Yang Z, Yu W, Qian Y (2001) Chem Mater 13:2169

    CAS  Google Scholar 

  25. He Y, Zhu Y, Wu N (2004) J Solid State Chem 177:2985

    CAS  Google Scholar 

  26. Ji T, Tang M, Guo L, Qi X, Yang Q, Xu H (2005) Solid State Commun 133:765

    CAS  Google Scholar 

  27. Li Q, Shao M, Yu G, Wu J, Li F, Qian Y (2003) J Mater Chem 13:424

    CAS  Google Scholar 

  28. Li YD, Duan XF, Qian YT, Yang L, Ji MR, Li CW (1999) J Am Chem Soc 119:7869

    Google Scholar 

  29. Lotgering FK (1964) Solid State Commun 2:55

    CAS  Google Scholar 

  30. Ramesha K, Seshadri R (2004) Solid State Sci 6:841

    CAS  Google Scholar 

  31. Li J, Chen Z, Lam KC, Mulley S, Proserpio DM (1997) Inorg Chem 36:684

    CAS  Google Scholar 

  32. Roy R (1989) Solid State Ionics 32–33:3

    Google Scholar 

  33. Roy R (1994) J Solid State Chem 111:11

    CAS  Google Scholar 

  34. Reig P, Demazeau G, Naslain R (1995) Eur J Solid State Inorg Chem 32:439

    CAS  Google Scholar 

  35. Reig P, Demazeau G, Naslain R (1997) J Mater Sci 32:4189

    CAS  Google Scholar 

  36. Yamada T, Akaishi M, Yamaoka S (1997) International Conference on High Pressure Science and Technology, Joint AIRAPT 16-HPCJ-38 Conference—Kyoto Japan, August 25–29, 1997. Booklet of abstracts, p 35

  37. Szymanski A, Abgarowicz E, Baron A, Niedbalska A, Salacinski R, Jentek J (1995) Diamond Relat Mater 4:234

    CAS  Google Scholar 

  38. Komath M, Cherian KA, Kulkarni SK, Ray A (1995) Diamond Relat Mater 4:20

    Google Scholar 

  39. Zhao XZ, Roy R, Cherian KA, Badzian A (1997) Nature 385:513

    CAS  Google Scholar 

  40. Roy R, Ravichandran D, Badzian A, Breval E (1996) Diamond Relat Mater 5:973

    CAS  Google Scholar 

  41. Korablov S, Yokosawa K, Korablov D, Tohji K, Yamasaki N (2006) Mater Lett 60:3041

    CAS  Google Scholar 

  42. Wentorf RH Jr (1961) J Chem Phys 34:809

    CAS  Google Scholar 

  43. Solozhenko V (1988) Zh Fiz Klum 62:3145

    CAS  Google Scholar 

  44. Maki J, Ikawa H, Fukunaga O (1991) In: Messier R, Glass JT, Butler JR, Roy R (eds) New diamond science and technology. MRS, p 1051

  45. Demazeau G, Gonnet V, Solozhenko V, Tanguy B, Montigaud H (1995) C R Acad Sci 320(IIb):419

    CAS  Google Scholar 

  46. Hao XP et al (2001) Chem Mater 13:2457

    CAS  Google Scholar 

  47. Hao XP et al (2002) J Cryst Growth 241:124

    CAS  Google Scholar 

  48. Dong S, Hao X, Xu X, Cui D, Jiang M (2004) Mater Lett 58:2791

    CAS  Google Scholar 

  49. Xao X, Xu X, Jiang M (2004) J Cryst Growth 270:192

    Google Scholar 

  50. Chen L, Gu Y, Li Z, Qian Y, Yang Z, Ma J (2005) J Cryst Growth 273:646

    CAS  Google Scholar 

  51. Yu M, Li K, Lai Z, Cui D, Hao X, Jiang M, Wang Q (2004) J Cryst Growth 269:570

    CAS  Google Scholar 

  52. Cohen ML (1991) Philos Trans Soc Lond A 334:01

    Google Scholar 

  53. Teter DM, Hemley RJ (1996) Science 271:53

    CAS  Google Scholar 

  54. Montigaud H, Tanguy B, Demazeau G, Courjault S, Birot M, Dunogues J (1995) C R Acad Sci Paris Sér IIb 325:229

    Google Scholar 

  55. Montigaud H, Tanguy B, Demazeau G, Alves I, Birot M, Dunogues J (1999) Diamond Relat Mater 8:1707

    CAS  Google Scholar 

  56. Montigaud H, Tanguy B, Demazeau G, Alves I, Courjault S (2000) J Mater Sci 35:2547

    CAS  Google Scholar 

  57. Bai YJ, Lu B, Liu ZG, Li L, Cui DL, Xu XG, Wang QL (2003) J Cryst Growth 547:505

    Google Scholar 

  58. Lu Q, Cao C, Li C (2003) J Mater Chem 13:1241

    CAS  Google Scholar 

  59. Goglio G, Foy D, Demazeau G Materials Science and Engineering R (in press)

  60. Liu Y, Zhang L, Shi Z, Yuan H, Pang W (2001) J Solid State Chem 158:68

    CAS  Google Scholar 

  61. Forster PM, Thomas PM, Gheetam AK (2002) Chem Mater 14:17

    CAS  Google Scholar 

  62. Cheetham AK, Ferey G, Loiseau T (1999) Angew Chem Int Ed Engl 39:3268

    Google Scholar 

  63. Shi Z, Feng S, Zhang L, Yang G, Hua J (2000) Chem Mater 12:2930

    CAS  Google Scholar 

  64. Clearfield A (1998) Chem Mater 10:2801

    CAS  Google Scholar 

  65. Chui SS, Lo YSMF, Charmant JPH, Orpen AG, Willams ID (1999) Science 283:1148

    CAS  Google Scholar 

  66. Batten SR, Robson R (1998) Angew Chem Int Ed Engl 37:1460

    Google Scholar 

  67. Wei B, Zhu G, Yu J, Qiu S, Xiao FS, Terasaki O (1999) Chem Mater 11:3417

    CAS  Google Scholar 

  68. Peng L, Li J, Yu J, Li G, Fang Q, Xu R (2005) CR Acad Sc Chim 8(3–4):541

    CAS  Google Scholar 

  69. Medina E, Iglesias M, Gutierrez-Puebla E, Angeles Monge M (2004) J Mater Chem 14:845

    CAS  Google Scholar 

  70. Mandal S, Kavitha G, Narayana C, Natarajan S (2004) J Solid State Chem 177:2198

    CAS  Google Scholar 

  71. Fu W, Shi Z, Li G, Zhang D, Dong W, Chen X, Feng S (2004) Solid State Sci 6:225

    CAS  Google Scholar 

  72. Sharma S, Ramanan A, Jansen M (2004) Solid State Ionics 170:93

    CAS  Google Scholar 

  73. Lutta ST, Chernoua NA, Zavalij PY, Whittingham MS (2003) J Mater Chem 13:1424

    CAS  Google Scholar 

  74. Schimeck GL, Kolis JW (1997) Chem Mater 9:2776

    Google Scholar 

  75. Li J, Chen Z, Wang RJ, Proserpio DM (1999) Coord Chem Rev 190–192:707

    Google Scholar 

  76. Chen Z, Wang RJ, Huang XY, Li J (2000) Acta Crystallogr C 56:1100

    Google Scholar 

  77. Jia DX, Zhang YZ, Dai J, Zhu QY, Gu XM (2004) J Solid State Chem 177:2476

    Google Scholar 

  78. Jia DX, Dai J, Zhu QY, Cao LH, Lin HH (2005) J Solid State Chem 178:874

    CAS  Google Scholar 

  79. Bawendi MG, Steigerwald ML, Brus LE (1990) Annu Phys Chem 41:477

    CAS  Google Scholar 

  80. Weller H (1993) Angew Chem Int Ed Engl 32:41

    Google Scholar 

  81. Iijima S (1991) Nature 354:56

    CAS  Google Scholar 

  82. Hu JT, Odom TW, Lieber CM (1999) Acc Chem Res 32:435

    CAS  Google Scholar 

  83. Hsu WK, Chang BH, Zhu YQ, Han WQ, Terrones M, Grobert N, Cheetham AK, kroto hw, Walton Dr (2000) J Am Chem Soc 122:10155

    CAS  Google Scholar 

  84. Liang WJ, Bockrath M, Bozovic D, Hafner JH, Tinkham M, Park H (2001) Nature 41:665

    Google Scholar 

  85. Puntes VF, Krishnan KM, Alivisatos AP (2001) Science 291:2115

    CAS  Google Scholar 

  86. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivistos AP (2000) Nature 404:59

    CAS  Google Scholar 

  87. Johnstin KP, Doty RC, Korgel BA (2000) Science 287:1471

    Google Scholar 

  88. Gudiksen MS, Lieber IM (2000) J Am Chem Soc 122:8801

    CAS  Google Scholar 

  89. Lei Y, Zhang LD, Fan JC (2001) Chem Phys Lett 338:231

    CAS  Google Scholar 

  90. Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Adv Mater 13:113

    CAS  Google Scholar 

  91. Odom TW, Huang JL, Kim P, Lieber CM (2000) J Phys Chem B 104:2794

    CAS  Google Scholar 

  92. Thurn-Albrecht T, Schotter J, Mastle CA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Science 290:2126

    CAS  Google Scholar 

  93. Duan XF, Huang Y, Cui Y, Wang J, Lieber CM (2001) Nature 409:6816

    Google Scholar 

  94. Bocquet JF, Chhor K, Pommier C (1999) Mater Chem Phys 57:273

    CAS  Google Scholar 

  95. Wang C, Deng ZX, Zhang G, Fan S, Li Y (2002) Powder Technol 125:39–44

    CAS  Google Scholar 

  96. Chen D, Jiao X, Chen D (2001) Mater Res Bull 36:1057

    CAS  Google Scholar 

  97. Vasquez-Vasquez C, Lopez-Quintela MA (2006) J Solid State Chem 179:3229

    Google Scholar 

  98. Li WJ, Shi EW, Chen ZZ, Zhen YQ, Yin ZW (2002) J Solid State Chem 163:132

    CAS  Google Scholar 

  99. Wang YW, Xu HY, Wang H, Zhang YC, Song ZQ, Yan H, Wan CR (2004) Solid State Ionics 167:419

    CAS  Google Scholar 

  100. Zhou G, Lü M, Gu F, Wang S, Xiu Z, Cheng X (2004) J Cryst Growth 270:283

    CAS  Google Scholar 

  101. Ferreira OP, Otubo L, Romano R, Alves OL (2006) Cryst Growth Des 6:601

    CAS  Google Scholar 

  102. Pan AL, Liu RB, Wang SQ, Wu ZY, Cao L, Xie SS, Zou BS (2005) J Cryst Growth 282:125

    CAS  Google Scholar 

  103. Li B, Xie Y, Huang J, Qian Y (2000) J Solid State Chem 153:170

    CAS  Google Scholar 

  104. Ma C, Moore D, Li J, Wang ZL (2003) Adv Mater 15:228

    CAS  Google Scholar 

  105. Nath M, Choudhury A, Kundu A, Rao CNR (2003) Adv Mater 15:2098

    CAS  Google Scholar 

  106. Zheng RB, Zeng JH, Mo MS, Qian YT (2003) Mater Chem Phys 82:116

    CAS  Google Scholar 

  107. Gautam UK, Seshadri R, Rao CNR (2003) Chem Phys Lett 375:560

    CAS  Google Scholar 

  108. Vadivel-Murugan A, Sonowane RS, Kale BB, Apte SK, Kulkarni AV (2001) Mater Chem Phys 71:98

    CAS  Google Scholar 

  109. Zhao FH, Su Q, Xu NS, Ding CR, Wu MM (2006) J Mater Sci 41:1449

    CAS  Google Scholar 

  110. Meng Z, Peng Y, Xu L, Qian Y (2002) Mater Lett 53:165

    CAS  Google Scholar 

  111. Panda SK, Gorai S, Chaudhuri S (2006) Materials Science and Engineering B 129:265

    CAS  Google Scholar 

  112. Hua R, Jia Z, Xie D, Shi C (2002) Mat Res Bull 37:1189

    CAS  Google Scholar 

  113. Zhang M, Wang Z, Mo M, Chen X, Zhang R, Yu W, Qian Y (2005) Mater Chem Phys 89:373

    CAS  Google Scholar 

  114. Bai YJ, Liu ZG, Xu XG, Cui DL, Hao XP, Feng X, Wang QL (2002) J Crystal Growth 241:189

    CAS  Google Scholar 

  115. Sardar K, Rao CNR (2004) Adv Mater 16:425

    CAS  Google Scholar 

  116. Li L, Hao X, Yu N, Cui D, Xu X, Jiang M (2003) J Crystal Growth 258:268

    CAS  Google Scholar 

  117. Qian XF, Zhang XM, Wang C, Tang KB, Xie Y, Qian YT (1999) Mat Res Bull 34:433

    CAS  Google Scholar 

  118. Cai P, Yang Z, Wang C, Xia P, Qian Y (2006) Materials Letters 60:410

    CAS  Google Scholar 

  119. Choi J, Gillan EG (2005) Inorg Chem 126:5372

    Google Scholar 

  120. Gu Y, Guo F, Qian Y, Zheng H, Yang Z (2003) Mater Lett 57:1679

    CAS  Google Scholar 

  121. Gu Y, Li Z, Chen L, Ying Y, Qian Y (2003) Mater Res Bull 38:1119

    CAS  Google Scholar 

  122. Shi L, Gu Y, Chen L, Qian Y, Yang Z, Ma J (2003) Solid State Comm 128:5

    CAS  Google Scholar 

  123. Gu Y, Chen L, Qian Y, Zhang W, Ma J (2005) J Am Ceram Soc 88:225

    CAS  Google Scholar 

  124. Xie Y, Su HL, Qian XF, Liu XM, Qian YT (2000) J Solid State Chem 149:88

    CAS  Google Scholar 

  125. Gu Y, Chen L, Qian Y, Gu H (2003) J Mater Sci Lett 22:1463

    CAS  Google Scholar 

  126. Gu Y, Qian Y, Chen L, Zhou F (2003) J Alloys Compd 352:325

    CAS  Google Scholar 

  127. Hu G, Cheng M, Ma D, Bao X (2003) Chem Mater 15:1470

    CAS  Google Scholar 

  128. Wang W, Kunnar S, Huang JY, Wang DZ, Ren ZF (2005) Nanotechnology 16:21

    CAS  Google Scholar 

  129. Yang H, Mercier P, Wang SC, Akins DL (2005) Chem Phys Lett 416:18

    CAS  Google Scholar 

  130. Basavalingu B, Byrappa K, Yoshimura M, Madhusudan P, Dayananda AS (2006) J Mater Sci 41:1465

    CAS  Google Scholar 

  131. Liu XY, Zeng JH, Zhang SY, Zheng RB, Liu XM, Qian YT (2003) Chem Phys Lett 374:348

    CAS  Google Scholar 

  132. Wei G, Deng Y, Lin YH, Nan CW (2003) Chem Phys Lett 372:590

    CAS  Google Scholar 

  133. Hou Y, Kondoh H, Che R, Takeguchi M, Ohta T (2006) Small 2:235

    CAS  Google Scholar 

  134. Laye RH, McInnes EJL (2004) Eur J Inorg Chem 14:2811

    Google Scholar 

  135. Sanchez C, Arribart H, Guille MM (2005) Nat Mater 4:277

    Article  CAS  Google Scholar 

  136. Miyazawa T, Ohtsu S, Nakagawa Y, Funazukuri T (2006) J Mater Sci 41:1489

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Demazeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demazeau, G. Solvothermal reactions: an original route for the synthesis of novel materials. J Mater Sci 43, 2104–2114 (2008). https://doi.org/10.1007/s10853-007-2024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2024-9

Keywords

Navigation