Skip to main content
Log in

Characterization and dielectric properties of β-SiC nanofibres

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

SiC nanofibres produced by chemical vapour reaction technique are investigated using scanning and transmission electron microscopy. The nanofibres have been found to have a crystalline core of β-SiC sheathed with thorn-like turbostratic carbon or amorphous Si/O/C, respectively. For this material, real and imaginary part of relative permittivity is measured in a frequency range of 1–18 GHz at room temperature. The results reveal that the permittivity and dielectric loss in the SiC nanofibres are a magnitude higher compared with sub-microcrystalline SiC powder. Composition and nanostructure are held responsible for the difference in dielectric properties. The mechanisms of dielectric loss in the SiC nanofibres are discussed based on interfacial polarization, lattice defects in the SiC nanofibre cores and conduction loss of turbostratic carbon in the thorn-like sheath of SiC nanofibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu Y, Kroto HW, Walton D, Lange H, Huczko A (2002) Chem Phys Lett 365:457

    Article  CAS  Google Scholar 

  2. Yang W, Araki H, Kohyama A, Katoh Y, Hu Q, Suzki H (2004) J Nucl Mater 329–333:539

    Article  CAS  Google Scholar 

  3. Zhang LD, Meng GW, Phillipp F (2000) Mater Sci Eng A 286:34

    Article  Google Scholar 

  4. Petrovic JJ, Milewski JV, Rohr DL, Gac FD (1985) J Mater Sci 20:1167

    Article  Google Scholar 

  5. Wong EW, Sheenhan PE, Lieber CM (1997) Science 277:1971

    Article  CAS  Google Scholar 

  6. Kim Ph, Lieber CM (1999) Science 286:2148

    Article  CAS  Google Scholar 

  7. Feng ZC, Mascerannas AJ, Choyke WJ, Powell JA (1988) J Appl Phys 64(6):3176

    Article  CAS  Google Scholar 

  8. Fissel A, schröter B, Richer W (1995) Appl Phys Lett 66:3182

    Article  CAS  Google Scholar 

  9. Bonard J-M, Salvetat J-P, Stocki T, de Heer WA, Forro L, Chatelain A (1998) Appl Phys Lett 73:918

    Article  CAS  Google Scholar 

  10. Ryu YH, Park BT, Song YH, Yong K (2004) J Cryst Growth 271:99

    Article  CAS  Google Scholar 

  11. Han WQ, Fan SS, Li QQ, Gu BL, Yu DP (1997) Chem Phys Lett 265:374

    Article  CAS  Google Scholar 

  12. Feng DH, Jia TQ, Li XX, Xu ZZ, Chen J, Deng SZ, Wu ZS, Xu NS (2003) Solid State Commun 128:295

    Article  CAS  Google Scholar 

  13. Liang CH, Meng GW, Zhang LD, Wu YC, Cui Z (2000) Chem Phys Lett 329:323

    Article  CAS  Google Scholar 

  14. Kassiba A, Tbellout M, Charpentier S, Herlin N, Emery JR (2000) Solid State Commun 115:389

    Article  CAS  Google Scholar 

  15. Saulig-Wenger K, Cornu D, Chassagneux F, Ferro G, Epicier Th, Miele Ph (2002) Solid State Commun 124:157

    Article  CAS  Google Scholar 

  16. Weir WB (1974) Proc IEEE 62:33

    Article  Google Scholar 

  17. Starck HC (2006) Home page: http://www.hcstarck.com. Accessed 01 Nov 2006

  18. Charpentier S, Kassiba A, Bulou A, Monthioux M, Carchetier M (1999) Eur Phys J Appl Phys 8:111

    Article  CAS  Google Scholar 

  19. Kassiba A (2003) In: Legrand AP, Sénémaud Ch (eds) Nanostructured silicon-based powders and composites. Taylor & Francis Group, London and New York, p 227

    Google Scholar 

  20. Kingery WD, Boven HK, Uhlmann DR (1976) Introduction to ceramics. John Wiley & Sons, New York, p 921

    Google Scholar 

  21. Raju GG (2003) Dielectrics in electric fields. Marcel Dekker, Inc., New York, Basel. http://www.engnetbase.com. Accessed 6 Dec 2006

  22. Kassiba A, Charpentier S (2003) In: Legrand AP, Sénémaud C (eds) Nanostructured silicon-based powders and composites. Taylor & Francis, London and New York, p 211

    Google Scholar 

  23. Kityk IV, Kassiba A, Tuesu K, Charpentier C, Ling Y, Makowska-Janusik M (2000) Mater Sci Eng B 77:147

    Article  Google Scholar 

  24. Charpentier S, Kassiba A, Emery J, Cauchetier M (1999) J Phys Condens Mater 11:4887

    Article  CAS  Google Scholar 

  25. Mouchon E, Colomban Ph (1996) J Mater Sci 31:323

    Article  CAS  Google Scholar 

  26. Cordelair J, Greil P (2000) J Eur Ceram Soc 20:1947

    Article  CAS  Google Scholar 

  27. Jin R, Zhou ZX, Mandrus D, Ivanov IN, Eres G, Howe JY, Puretzky AA, Geohegan DB (2007) Phys B 388:326

    Article  CAS  Google Scholar 

  28. Priou A (1992) Dielectric properties of heterogeneous materials, Pier 6 progress in electromagnetics research. Elsevier, New York, p 14

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Swedish Defence Nanotechnology Program for the financial support, and University Claude Bernard, Laboratoire des Multimatériaux et Interfaces (LMI) in Lyon, France, for the supply of the materials. We would also like to thank Jan Fagerström (Swedish Defence Research Agency) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Jänis, A. & Klement, U. Characterization and dielectric properties of β-SiC nanofibres. J Mater Sci 43, 1094–1101 (2008). https://doi.org/10.1007/s10853-007-2249-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2249-7

Keywords

Navigation