Skip to main content

Advertisement

Log in

Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles

  • Reactivity of SOlids
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Conceptually, thermochemical cycles are heat engines that drive endothermic chemical reactions, e.g., splitting water into hydrogen and oxygen. The two-step metal oxide cycles (typically ferrite-based) are particularly attractive since they are relatively simple, use non-corrosive materials, and involve gas–solid reactions requiring no difficult separations. Additionally, they are potentially the most efficient renewable-energy driven processes for hydrogen production. We are developing a novel concentrating solar power (CSP) driven metal-oxide-based heat engine, the CR5, at the heart of which are rings of a reactive solid that are thermally and chemically cycled to produce oxygen and hydrogen from water in separate and isolated steps. The monolithic ring structures must have high geometric surface area for gas–solid contact and for adsorption of incident solar radiation, and must maintain structural integrity and high reactivity after extensive thermal cycling to temperatures of at least 1,400 °C. We have demonstrated through laboratory and on-sun testing that cobalt ferrite/zirconia mixtures fabricated into monolithic structures suitable for the CR5 are mechanically robust and maintain productivity over tens of cycles. We have also demonstrated that carbon dioxide splitting (CDS) to carbon monoxide and oxygen is a thermodynamically favorable alternative to water splitting that can be conducted with both iron- and cerium-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci USA 103:15729

    Article  CAS  Google Scholar 

  2. Dukes JS (2003) Clim Change 61:31

    Article  CAS  Google Scholar 

  3. Ivy J (2004) Summary of electrolytic hydrogen production. National Renewable Energy Laboratory report NREL/MP-560-36734

  4. Abanades S, Charvin P, Flamant G, Neveu P (2006) Energy 31:2469

    Article  Google Scholar 

  5. Funk JE, Reinstrom RM (1966) Ind Eng Chem Process Des Develop 5:336; Abraham BA, Schreiner F (1974) Ind Eng Chem Fund 13:305

  6. Nakamura T (1977) Sol Energy 19:467

    Article  CAS  Google Scholar 

  7. Kodama T, Kondoh Y, Kiyama A, Shimizu K (2003) In: Thornbloom MD, Jones SA, (eds) Proceedings of the ASME international solar energy conference (ISEC), ASME, Hawaii, p 121

  8. Ehrensberger K, Kuhn P, Shklover V, Oswald HR (1996) Solid State Ionics 90:75

    Article  CAS  Google Scholar 

  9. Ehrensberger K, Frei A, Kuhn P, Oswald HR, Hug P (1995) Solid State Ionics 78:151

    Article  CAS  Google Scholar 

  10. Tamaura Y, Steinfeld A, Kuhn P, Ehrensberger K (1995) Energy 20:325

    Article  CAS  Google Scholar 

  11. Tamaura Y, Kojima M, Sano T, Ueda Y, Hasegawa N, Tsuji M (1998) Int J Hydrogen Energy 23:1185

    Article  CAS  Google Scholar 

  12. Ishihara H, Kaneko H, Yokoyama T, Fuse A, Tamaura Y (2006) In: Proceedings of the 2005 international solar energy conference (ISEC), ASME, Orlando, FL, 2005, p 687

  13. Aoki H, Kaneko H, Hasegawa N, Ishihara H, Takahashi Y, Suzuki A, Tamaura Y (2004) In Proceedings of 2004 international solar energy conference (ISEC), ASME, Portland, OR, p 515

  14. Kodama T, Kondoh Y, Yamamoto R, Andou H, Satou N (2005) Sol Energy 78:623

    Article  CAS  Google Scholar 

  15. Diver RB, Miller JE, Allendorf MD, Siegel NP, Hogan RE (2006) In: Proceedings of the 2006 international solar energy conference (ISEC), ASME, Denver, CO

  16. Miller JE, Evans LR, Stuecker JN, Allendorf MD, Siegel NP, Diver RB (2006) In: Proceedings of the 2006 international solar energy conference (ISEC), ASME, Denver, CO

  17. James DL, Siegel NP, Diver RB, Boughton BD, Hogan RE (2006) In: Proceedings of the 2006 international solar energy conference (ISEC), ASME, Denver, CO

  18. Allendorf MD, Miller JE, Siegel NP, Diver RB (2006) In: Proceedings of the 2006 international solar energy conference (ISEC), ASME, Denver, CO

  19. Erickson DS, Mason TO (1985) J Solid State Chem 59:42

    Article  CAS  Google Scholar 

  20. Allendorf MD, Miller JE, Siegel NP, Diver RB, Energy Fuel (submitted)

  21. Roeb M, Sattler C, Kluser R, Monnerie L, Konstandopoulos AG, Agrafiotis C, Zaspalis VT, Nalbandian L, Steele A, Stobbe P (2006) In: Proceedings of the 2005 international solar energy conference (ISEC), ASME, Orlando, FL, 2005, p 671

  22. Stuecker JN, Miller JE, Ferrizz RE, Mudd JE, Cesarano J III (2004) Ind Eng Chem Res 43:51

    Article  CAS  Google Scholar 

  23. Stuecker JN, Cesarano J III, Hirschfeld DA (2003) J Mater Process Technol 142:318; Cesarano J III, Calvert PD (2000) U.S. Patent 6,027,326; Cesarano J III, Segalman R, Calvert P (1998) Ceramic Ind 148:94

  24. Ferrizz RM, Stuecker JN, Cesarano J III, Miller JE (2005) Ind Eng Chem Res 44:302

    Article  CAS  Google Scholar 

  25. Diver RB, Siegel NP, Miller JE, Moss TA, Stuecker JN, James DL (2008) In: Proceedings of 2008 14th Biennial CSP solar PACES symposium, Las Vegas, NV

  26. McCarty JG, Gusman M, Lowe DM, Hildenbrand DL, Lau KN (1999) Catal Today 47:5

    Article  CAS  Google Scholar 

  27. Abanades S, Flamant G (2006) Sol Energy 80:1611

    Article  CAS  Google Scholar 

  28. Sharma S, Hilaire S, Vohs JM, Gorte RJ, Jen H-W (2000) J Catal 190:199

    Article  CAS  Google Scholar 

  29. Bernal S, Blanco G, Gatica JM, Larese C, Vidal H (2001) J Catal 200:411

    Article  CAS  Google Scholar 

  30. Demoulin O, Navez BM, Mugabo JL, Ruiz P (2007) Appl Catal B 70:284

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J.E., Allendorf, M.D., Diver, R.B. et al. Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. J Mater Sci 43, 4714–4728 (2008). https://doi.org/10.1007/s10853-007-2354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2354-7

Keywords

Navigation