Skip to main content

Advertisement

Log in

Improvement of tensile properties and toughness of an epoxy resin by nanozirconium-dioxide reinforcement

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zirconium dioxide (ZrO2) nanoparticles were systematically added as reinforcement to a diglycidyl ether of bisphenol A (DGEBA)-based epoxy resin. A series of composites with varying amounts of nanoparticles was prepared and their morphology and mechanical properties were studied. The obtained nanocomposites were characterized by tensile tests, dynamic mechanical thermal analysis, and fracture toughness (KIC) investigations; by standardized methods, to define the influence of the nanoparticle content on their mechanical and thermal properties. The morphological analysis of the composites shows that nanoparticles form small clusters, which are uniformly distributed into the matrix bulk. The tensile modulus (E) and the KIC of the epoxy matrix increase at rising zirconia content. Improvements of more than 37% on modulus and 100% on KIC were reached by the nanocomposite containing 10 vol.-% ZrO2 with respect to the neat epoxy (Eo = 3.1 GPa, KICo = 0.74 MPam0.5). The presence of nanoparticles produces also an increment on glass transition temperature (Tg). The epoxy resin added with 8 vol.-% ZrO2 records a Tg approximately 8% higher than the unmodified matrix (Tgo = 100.3 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Walter R, Friedrich K, Privalko V, Savadori A (1997) J Adhesion 64:87

    Article  CAS  Google Scholar 

  2. Wang K, Chen L, Wu J, Ling-Toh M, He C, Yee AF (2005) Macromolecules 38:788

    Article  CAS  Google Scholar 

  3. Kang S, Hong SI, Choe CR, Park M (2001) Polymer 42:879

    Article  CAS  Google Scholar 

  4. Zhang Z, Rong MZ, Friedrich K (2005) In: Friedrich K, Fakirov S, Zhan Z (eds) From- nano- to- macro-scale. Springer, New York, p 25

    Google Scholar 

  5. Wetzel B, Haupert F, Zhang MQ (2003) Comp Sci and Tech 63:2055

    Article  CAS  Google Scholar 

  6. Ng CB, Schadler LS, Siegel RW (1999) Nanostruct Mater 12:507

    Article  Google Scholar 

  7. Richerson DW (1992) Modern ceramics engineering. Marcel Dekker, New York, p 166, 756

  8. Brook R, Cahn R (1991) Concise encyclopedia of advanced ceramic materials. Pergamon, Oxford, p 526

    Google Scholar 

  9. Xiao K, Ye L, Kwok YS (1998) J Mater Sci 33:2831. doi:https://doi.org/10.1023/A:1017533819817

    Article  CAS  Google Scholar 

  10. Zhang H (2007) Fracture of nanoparticle filled polymer composites. Institute of Composite Materials, Kaiserslautern

    Google Scholar 

  11. Halpin JC, Kardos JL (1976) Polym Eng Sci 16:344

    Article  CAS  Google Scholar 

  12. Lewis TB, Nielsen LE (1970) J Appl Polym Sci 14:1449

    Article  CAS  Google Scholar 

  13. Nielsen EL, Landel RF (1994) Mechanical properties of polymers and composites. Marcel Dekker, New York

    Google Scholar 

  14. Mc-Gee S, Mc-Cullough RL (1981) Polym Comp 2:149

    Article  CAS  Google Scholar 

  15. Petrovikova E, Knight R, Schadler LS, Twardowski TE (2000) J Appl Polym Sci 78:2272

    Article  Google Scholar 

  16. Roulin-Moloney AC (ed) (1989) Fractography and failure mechanisms of polymers and composites. Elsevier Applied Science, London, p 233

  17. Yao XF, Yeh HY, Zhou D, Zhang YH (2006) J Compos Mater 40:371

    Article  CAS  Google Scholar 

  18. Wetzel B, Rosso P, Haupert F, Friedrich K (2006) Eng Fract Mech 73:2375

    Article  Google Scholar 

  19. Sue H-J, Garcia Meitin EI, Pickelman DM, Bott CJ (1996) Colloid Polym Sci 274:1435

    Article  Google Scholar 

  20. Zuiderduin WCJ, Huetink J, Gaymans RJ (2006) Polymer 47:5880

    Article  CAS  Google Scholar 

  21. Lange FF (1970) Phil Mag 22:983

    Article  CAS  Google Scholar 

  22. Faber KT, Evans AG (1983) Acta Metall 31:565

    Article  Google Scholar 

  23. Evans AG, Williams S, Beaumont PWR (1985) J Mater Sci 20:3668. doi:https://doi.org/10.1007/BF01113774

    Article  CAS  Google Scholar 

  24. Kinloch AJ, Young RJ (1983) Fracture behaviour of polymers. Applied Science Publishers, London

    Google Scholar 

  25. Spanoudakis J, Young RJ (1984) J Mater Sci 19:473. doi:https://doi.org/10.1007/BF00553571

    Article  CAS  Google Scholar 

  26. Zhao Q, Hoa SV (2007) J Compos Mater 41:201

    Article  CAS  Google Scholar 

  27. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Polymer 48:530

    Article  CAS  Google Scholar 

  28. Odegard GM, Clancy TC, Gates TS (2005) Polymer 46:553

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was developed within the frame of the Stiftung Industrieforschung Projekt S 657. R. Medina is grateful for the financial support of the German Service of Academic Exchange (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Medina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, R., Haupert, F. & Schlarb, A.K. Improvement of tensile properties and toughness of an epoxy resin by nanozirconium-dioxide reinforcement. J Mater Sci 43, 3245–3252 (2008). https://doi.org/10.1007/s10853-008-2547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2547-8

Keywords

Navigation