Skip to main content
Log in

Particle size dependence of optical and defect parameters in mechanically milled Fe2O3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fe2O3 of particle sizes ranging from 120 to 20 nm has been prepared by the ball-milling process using different milling hour. X-ray diffraction technique and transmission electron microscopy have been used for determining the average particle sizes of the prepared samples. Direct optical band gap for the unmilled and the ball-milled samples has been calculated from the optical absorption data. A red shift in the band gap due to the reduction of particle size has been observed. The coincidence Doppler broadening of the electron positron annihilation γ-radiation spectroscopy has been employed to identify the nature of defects generated due to the ball-milling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Henglin A (1989) Chem Rev 89:1861

    Article  Google Scholar 

  2. Hinds KA et al (2003) Blood 102:867; Rudge SR, Kurtz TL, Vessely CR, Catterall LG, Williamson DL (2000) Biomaterials 21:1411

  3. Jones DH (1989) Hyperfine Interact 47:289

    Article  Google Scholar 

  4. Mimura N, Takahara I, Saito M, Hattori T, Ohkuma K, Ando M (1998) Catal Today 45:61

    Article  CAS  Google Scholar 

  5. Huo L, Li W, Lu L, Cui H, Xi S, Wang J, Zhao B, Shen Y, Lu Z (2000) Chem Mater 12:790

    Article  CAS  Google Scholar 

  6. Zboril R, Mashlan M, Petridis D (2002) Chem Mater 14:969

    Article  CAS  Google Scholar 

  7. Pascual R, Sayer M, Kumar CVRV, Zou L (1991) J Appl Phys 70:2348

    Article  CAS  Google Scholar 

  8. Wang X, Chen X, Ma XC, Zheng H, Ji M, Zhang Z (2004) Chem Phys Lett 384:391

    Article  CAS  Google Scholar 

  9. Kim ET, Yoon SG (1993) Thin Solid Films 227:7

    Article  CAS  Google Scholar 

  10. Bokhimi X, Morales A, Portilla M, Gracia-Ruiz A (1999) Thin Solid Films 12:589

    Google Scholar 

  11. Luo WG, Ding AL, Li H (1995) Integr Ferroelectr 9:75

    Article  CAS  Google Scholar 

  12. Birringer R, Gleiter H, Klein HP, Marquardt P (1984) Phys Lett A 102:365

    Article  Google Scholar 

  13. Michel D, Gaffet E, Berther P (1995) Nanostruct Mater 6:667

    Article  Google Scholar 

  14. Chakrabarti M, Bhowmick D, Sarkar A, Chattopadhyay S, Dechoudhury S, Sanyal D, Chakrabarti A (2005) J Mater Sci 40:5265. doi:https://doi.org/10.1007/s10853-005-0743-3

    Article  CAS  Google Scholar 

  15. Chakrabartii M, Dutta S, Chattopadhyay S, Sarkar A, Sanyal D, Chakrabarti A (2004) Nanotechnology 15:1792

    Article  Google Scholar 

  16. Zhang BQ, Lu L, Lai MO (2003) Physica B 325:120

    Article  CAS  Google Scholar 

  17. Hautojarvi P, Corbel C (1995) In: Dupasquier A, Mills AP Jr (eds) Positron spectroscopy of solids. IOS Press, Amsterdam, p 491; In: Krause-Rehberg R, Leipner HS (eds) Positron annihilation in semiconductors, Springer Verlag, Berlin, 1999

  18. Lynn KG, Goland AN (1976) Solid State Commun 18:1549

    Article  CAS  Google Scholar 

  19. Williamson GK, Hall WH (1953) Acta Metall 1:22

    Article  CAS  Google Scholar 

  20. Chakrabarti M, Sarkar A, Chattopadhyay S, Sanyal D (2006) In: Martins BP (ed) New topics in superconductivity research. Nova Science, New York

    Google Scholar 

  21. Chakrabarti M, Sanyal D, Chakrabarti A (2007) J Phys Condens Matter 19:236210

    Article  Google Scholar 

  22. Sanyal D, Chakrabarti M, Roy TK, Chakrabarti A (2007) Phys Lett A 371:482

    Article  CAS  Google Scholar 

  23. Pancove J (1979) Optical processes in semiconductors. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  24. Dakhel AA, Henari FZ (2003) Cryst Res Technol 38:979

    Article  CAS  Google Scholar 

  25. Tauc J (1970) Mater Sci Bull 5:72

    Google Scholar 

  26. Dutta S, Chattopadhyay S, Sutradhar M, Sarkar A, Chakrabarti M, Sanyal D, Jana D (2007) J Phys Condens Matter 19:236218

    Article  Google Scholar 

  27. Srikant V, Clarke DR (1997) J Appl Phys 81:6357

    Article  CAS  Google Scholar 

  28. Puska MJ, Nieminen RM (1994) Rev Mod Phys 66:841

    Article  CAS  Google Scholar 

  29. Myler U, Simpson PJ (1997) Phys Rev B 56:14303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. Chakrabarti and M. Sutradhar gratefully acknowledge CSIR, Government of India, for providing financial assistance. A. Banerjee gratefully acknowledges Prof. S. K. Pradhan, Department of Physics, Burdwan University, for his valuable suggestions. The authors are thankful to Prof. G. N. Mukherjee, Department of Chemistry, University of Calcutta, for the optical measurement. The authors are also thankful to Mr. P. Ray, SINP, Kolkata, for the TEM measurement and A. Kar Mahapatra, SINP, Kolkata, for the XRD measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahuya Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, M., Banerjee, A., Sanyal, D. et al. Particle size dependence of optical and defect parameters in mechanically milled Fe2O3. J Mater Sci 43, 4175–4181 (2008). https://doi.org/10.1007/s10853-008-2573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2573-6

Keywords

Navigation