Skip to main content
Log in

Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two different polymorphs of ferrous oxalate dihydrate were synthesized by precipitation of ferrous ions with oxalic acid: α-Fe(C2O4) · 2H2O with a monoclinic unit cell is obtained after precipitation and ageing at 90 °C, whereas the orthorhombic β-type is formed after precipitation at room temperature. The morphology of the oxalate crystals can be tailored from prismatic crystals of the α-polymorph over star-like aggregates of α/β-mixtures to non-agglomerated crystallites of β-oxalate. Thermal decomposition in air gives hematite at T ≥ 250 °C; if the thermolysis reaction is performed at low oxygen partial pressures (e.g., T = 500 °C and p O2 = 10−25 atm) magnetite is obtained. The synthesized magnetite is stoichiometric as signaled by lattice parameters of a 0 = 8.39 Å. The thermal decomposition of ferrous oxalate is monitored by thermal analysis, XRD, and IR-spectroscopy. The morphology of the oxalate crystals is preserved during thermal decomposition; the oxalates are transformed into spinel particle aggregates of similar size and shape. The crystallite size of the magnetite particles increases with temperature and is 40 or 55 nm, if synthesized from β-oxalate at 500 °C or 700 °C, respectively. The saturation magnetization of the magnetite particles decreases with decreasing particle size. Since the particles are larger than the critical diameter for superparamagnetic behavior they display hysteresis behavior at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Manasse E (1910) Rend Acc Naz Lincei 19:138

    Google Scholar 

  2. Mazzi F, Garavelli C (1957) Period Mineral 26:269

    CAS  Google Scholar 

  3. Carić S (1959) Bull Soc franc Min Crist 82:50

    Google Scholar 

  4. Deyrieux R, Peneloux A (1969) Bull Soc Chim Fr 8:2675

    Google Scholar 

  5. Rao V, Shashimohan AL, Biswas AB (1974) J Mater Sci 9:430–433. doi:https://doi.org/10.1007/BF00737843

    Article  CAS  Google Scholar 

  6. Glenn Rupard R, Gallagher PK (1996) Thermochim Acta 272:11. doi:https://doi.org/10.1016/0040-6031(95)02626-6

    Article  Google Scholar 

  7. Frost RL, Weier ML (2004) J Therm Anal Calorim 75:277. doi:https://doi.org/10.1023/B:JTAN.0000017349.31035.dd

    Article  CAS  Google Scholar 

  8. Mohamed MA, Galwey AK, Halawy SA (2005) Thermochim Acta 429:57. doi:https://doi.org/10.1016/j.tca.2004.08.021

    Article  CAS  Google Scholar 

  9. Hermanek M, Zboril R, Mashlan M, Machala L, Schneeweiss O (2006) J Mater Chem 16:1273. doi:https://doi.org/10.1039/b514565a

    Article  CAS  Google Scholar 

  10. Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C (2007) J Am Chem Soc 129:10929. doi:https://doi.org/10.1021/ja072918x

    Article  CAS  Google Scholar 

  11. Zhou W, Tang K, Zeng S, Qi Y (2008) Nanotechnology 19:065602. doi:https://doi.org/10.1088/0957-4484/19/6/065602

    Article  Google Scholar 

  12. Cornell RM, Schwertfeger U (2003) The Iron Oxides, Viley VCH

  13. Hergt R, Hiergeist R, Zeissberger M, Schüler D, Heyen U, Hilger I et al (2005) J Magn Magn Mater 293(205):80–86

    Article  CAS  Google Scholar 

  14. Welo LA, Baudisch O (1925) Phil Mag 50(IV):399

    Article  CAS  Google Scholar 

  15. David I, Welch AJE (1956) Trans Faraday Soc 52:1642. doi:https://doi.org/10.1039/tf9565201642

    Article  CAS  Google Scholar 

  16. Massart R (1981) IEEE Trans Magn 17:1247. doi:https://doi.org/10.1109/TMAG.1981.1061188

    Article  Google Scholar 

  17. Faivre D, Agrinier P, Menguy N, Zuddas P, Pachana K, Gloter A et al (2004) Geochim Cosmochim Acta 68(21):4395. doi:https://doi.org/10.1016/j.gca.2004.03.016

    Article  CAS  Google Scholar 

  18. Vassierres L, Chaneac C, Tronc E, Jolivet JP (1998) J Colloid Interface Sci 205:205. doi:https://doi.org/10.1006/jcis.1998.5614

    Article  Google Scholar 

  19. Mürbe J, Rechtenbach A, Töpfer J (2008) Mater Chem Phys 110:426. doi:https://doi.org/10.1016/j.matchemphys.2008.02.037

    Article  Google Scholar 

  20. Dutz S, Hergt R, Mürbe J, Müller R, Zeisberger M, Andrä W et al (2007) J Magn Magn Mater 308:305. doi:https://doi.org/10.1016/j.jmmm.2006.06.005

    Article  CAS  Google Scholar 

  21. Xuan S, Chen M, Hao L, Jiang W, Gong X, Hu Y et al (2008) J Magn Magn Mater 320:164. doi:https://doi.org/10.1016/j.jmmm.2007.05.019

    Article  CAS  Google Scholar 

  22. Gabal MA, Ata-Allah SS (2004) J Phys Chem Solids 65:995. doi:https://doi.org/10.1016/j.jpcs.2003.10.059

    Article  CAS  Google Scholar 

  23. Muan A, Osborn EF (1965) Phase equilibria among oxides in steelmaking. Addison-Wesley Publ. Company, Redding, USA

    Google Scholar 

  24. Jørgensen JE, Mosegaard L, Thomsen LE, Jensen TR, Hanson JC (2007) J Solid State Chem 180:180. doi:https://doi.org/10.1016/j.jssc.2006.09.033

    Article  Google Scholar 

  25. Gillot B (1994) Vibrat Spectr 6:127. doi:https://doi.org/10.1016/0924-2031(94)85001-1

    Article  CAS  Google Scholar 

  26. Kustova GN, Burgina EB, Sadykov VA, Poryvaev SG (1992) Phys Chem Miner 18:379. doi:https://doi.org/10.1007/BF00199419

    Article  CAS  Google Scholar 

  27. Musić S, Popović S, Ristić M (1993) J Mater Sci 28:632. doi:https://doi.org/10.1007/BF01151237

    Article  Google Scholar 

  28. White WB, DeAngelis BA (1967) Spectrochimica Acta 23A:985

    Article  Google Scholar 

  29. Ishii M, Nakahira M, Yamanaka T (1972) Solid State Commun 11:209. doi:https://doi.org/10.1016/0038-1098(72)91162-3

    Article  CAS  Google Scholar 

  30. Coey JMD, Khalafalla D (1972) Phys Status Solidi 11:229. a. doi:https://doi.org/10.1002/pssa.2210110125

    Article  CAS  Google Scholar 

  31. Dunlop DJ (1973). Geophys Res 78(11):1780. doi:https://doi.org/10.1029/JB078i011p01780

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. S. Müller and M. Friedrich (FH Jena) for oxalate preparations and SEM investigations, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Töpfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angermann, A., Töpfer, J. Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate. J Mater Sci 43, 5123–5130 (2008). https://doi.org/10.1007/s10853-008-2738-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2738-3

Keywords

Navigation