Skip to main content
Log in

Dispersion assessment and studies on AC percolative conductivity in polymer-derived Si–C–N/CNT ceramic nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanocomposites comprise polysilazane-derived SiCN ceramic charged with carbon nanotubes (CNTs) have been prepared by dispersion of multi-walled CNTs with a diameter of 80 nm in a cross-linked polysilazane (HTT 1800, Clariant) using a simple roll-mixer method. Subsequently, the composites were warm pressed and pyrolyzed in argon atmosphere. Scanning electron microscopy (SEM) and 3D Raman imaging techniques were used as major tools to assess the dispersion of CNTs throughout the ceramic matrix. Furthermore, studies on the effect of the volume fraction of CNTs in the nanocomposites on their electrical properties have been performed. The specific bulk conductivities of the materials were analyzed by AC impedance spectroscopy, revealing percolation thresholds (ρc) at CNT loadings lower than 1 vol%. Maximum conductivity amounted to 7.6 × 10−2 S/cm was observed at 5 vol% CNT. The conductivity exponent in the SiCN/CNT composites was found equal to 1.71, indicating transport in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yakobson BI, Brabec CJ, Bernholc J (1996) Phys Rev Lett 76:2511

    Article  CAS  Google Scholar 

  2. Treacy MMJ, Ebbesen TW, Gibbson JM (1996) Nature 381:678

    Article  CAS  Google Scholar 

  3. Lurie O, Wagner HD (1998) J Mater Res 13:2418

    Article  Google Scholar 

  4. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Phys Rev B 58:14013

    Article  CAS  Google Scholar 

  5. Yu M, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287:637

    Article  CAS  Google Scholar 

  6. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Phys Rev Lett 84:5552

    Article  CAS  Google Scholar 

  7. Berber S, Kwon Y, Tomanek D (2000) Phys Rev Lett 84:4613

    Article  CAS  Google Scholar 

  8. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE (1996) Science 273:483

    Article  CAS  Google Scholar 

  9. Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE (2000) Appl Phys Lett 77:666

    Article  CAS  Google Scholar 

  10. Langer L, Stockman L, Heremans JP, Bayot V, Olk CH, Van Haesendonck C, Bruynseraede Y, Issi JP (1994) J Mater Res 9:927

    Article  CAS  Google Scholar 

  11. Thostenson ET, Ren Z, Chou TW (2001) Comp Sci Technol 1899:61

    Google Scholar 

  12. Gao L, Jiang L, Sun J (2006) J Electroceram 17:51

    Article  CAS  Google Scholar 

  13. An L, Xu W, Rajagopalan S, Wang C, Wang H, Fan Y, Zhang L, Jiang D, Kapat J, Chow L, Guo B, Liang J, Vaidyanathan R (2004) Adv Mater 16:2036

    Article  CAS  Google Scholar 

  14. Katsuda Y, Gerstel P, Narayanan J, Bill J, Aldinger A (2006) J Eur Cer Soc 26:3399

    Article  CAS  Google Scholar 

  15. Li Y, Fernandez-Recio L, Gerstel P, Srot V, van Aken PA, Kaiser G, Burghard M, Bill J (2008) Chem Mater 20:5593

    Article  CAS  Google Scholar 

  16. Al-Jishi R, Dresselhaus G (1982) Phys Rev B 26:4514

    Article  CAS  Google Scholar 

  17. Gruber T, Zerda TW, Gerspacher M (1994) Carbon 32:1377

    Article  CAS  Google Scholar 

  18. Menargh TP, Cooney RP, Johnson RA (1984) Carbon 22:39

    Article  Google Scholar 

  19. Wang Q, Allred DD, Gonzales-Hernandez J (1993) Phys Rev B 47:6119

    Article  CAS  Google Scholar 

  20. Jorio A, Pimenta MA, Fantini C, Souza M, Filho Souz AG, Samsonidze GG, Dresselhaus G, Dresselhaus MS, Saito R (2004) Carbon 42:1067

    Article  CAS  Google Scholar 

  21. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Phys Rep 409:47

    Article  Google Scholar 

  22. Costa S, Borowiak-Palen E, Krusznynska M, Bachmatiuk A, Kalenczuk RJ (2008) Mater Sci-Poland 26:433

    CAS  Google Scholar 

  23. Bacsa WS, Ugarte D, Chatelain A, de Heer WA (1994) Phys Rev B 50:15473

    Article  CAS  Google Scholar 

  24. Hiura H, Ebbesen TW, Tanigaki K, Takahashi H (1993) Chem Phys Lett 202:509

    Article  CAS  Google Scholar 

  25. Trassl S, Motz G, Rössler E, Ziegler G (2001) J Non-Cryst Solids 293–295:261

    Article  Google Scholar 

  26. Schader LS, Giannaris SC, Ajayan PM (1998) Appl Phys Lett 73:3842

    Article  Google Scholar 

  27. Wang S, Liang R, Wang B, Zhang C (2008) Chem Phys Lett 457:371

    Article  CAS  Google Scholar 

  28. Brillante A, Billoti I, Della Valle RG, Venuti E, Masino M, Girlando A (2005) Adv Mater 17:2549

    Article  CAS  Google Scholar 

  29. Huan S, Lin W, Sato H, Yang H, Jiang J, Ozaki Y, Wu H, Shen G, Yu R (2007) J Raman Spectrosc 38:260

    Article  CAS  Google Scholar 

  30. Bassil A, Puech P, Landa G, Bacsa W, Barrau S, Demont P, Lacabanne C, Perez E, Bacsa R, Flahaut E, Peigney A, Laurent C (2005) J Appl Phys 97:034303

    Article  CAS  Google Scholar 

  31. Deng F, Zheng QS (2008) Appl Phys Lett 92:071902

    Article  CAS  Google Scholar 

  32. Curran SA, Zhang D, Wondmagegn WT, Ellis AV, Cech J, Roth S, Caroll DL (2006) J Mater Res 21:1071

    Article  CAS  Google Scholar 

  33. Meincke O, Kämpfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Polymers 45:739

    Article  CAS  Google Scholar 

  34. Schartel B, Pötschke P, Knoll U, Abdel-Goad M (2004) Eur Polym J 41:1061

    Article  CAS  Google Scholar 

  35. Pötschke P, Fornes TD, Paul DR (2002) Polymer 43:3247

    Article  Google Scholar 

  36. Balberg I, Anderson CH, Alexander S, Wagner N (1984) Phys Rev B 30:3933

    Article  Google Scholar 

  37. Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Mareche JF (1996) Phys Rev B 53:6209

    Article  CAS  Google Scholar 

  38. Munson-McGee SH (1991) Phys Rev B 43:3331

    Article  CAS  Google Scholar 

  39. Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF (1995) Phys Rev E 52:819

    Article  CAS  Google Scholar 

  40. Stauffer D, Aharony A (1992) Introduction to Percolation Theory. Taylor and Francis, London

    Google Scholar 

  41. Weber M, Kamal MR (1997) Polym Comp 18:711

    Article  CAS  Google Scholar 

  42. Rul S, Lefevre-schlick F, Capria E, Laurent C, Peigney E (2004) Acta Mater 52:1061

    Article  CAS  Google Scholar 

  43. Kymakis E, Alexandou I, Amaratunga GAJ (2002) Synth Met 127:59

    Article  CAS  Google Scholar 

  44. McLachlan DS, Chiteme C, Park C, Wise KE, Lowther SE, Lillehei PT (2005) J Polym Sci B: Polym Phys 43:3273

    Article  CAS  Google Scholar 

  45. Sandler JKW, Kirk JE, Kinloch IA, Schaffer MSP, Windle AH (2003) Polymer 44:5893

    Article  CAS  Google Scholar 

  46. Kilbride BE, Coleman JN, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau WJ (2002) J Appl Phys 92:4024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AF acknowledges the support of the Alexander von Humboldt fellowship program. The authors thank Prof. Dr. Loutfi (MER Company, USA) for supplying the multi-walled CNTs used in this study and Dr. Bremes for performing the electrical conductivity measurements. RR thanks the Fonds der Chemischen Industrie for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ionescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionescu, E., Francis, A. & Riedel, R. Dispersion assessment and studies on AC percolative conductivity in polymer-derived Si–C–N/CNT ceramic nanocomposites. J Mater Sci 44, 2055–2062 (2009). https://doi.org/10.1007/s10853-009-3304-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3304-3

Keywords

Navigation