Skip to main content
Log in

Single step synthesis of nanosized CeO2–MxOy mixed oxides (MxOy = SiO2, TiO2, ZrO2, and Al2O3) by microwave induced solution combustion synthesis: characterization and CO oxidation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Various CeO2 MxOy (MxOy = SiO2, TiO2, ZrO2, and Al2O3) mixed oxides were prepared by microwave induced solution combustion method and analyzed by different complimentary techniques, namely, X-ray diffraction (XRD), Raman spectroscopic (RS), UVVis diffuse reflectance spectroscopy (UV-DRS), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG-DTA), and BET surface area. XRD analyses revealed that CeO2 SiO2 and CeO2 TiO2 mixed oxides are in slightly amorphous form and exhibit only broad diffraction lines due to cubic fluorite structure of ceria. XRD lines due to the formation of cubic Ce0.5Zr0.5O2 were observed in the case of CeO2 ZrO2 sample. RS results suggested defective structure of the mixed oxides resulting in the formation of oxygen vacancies. The UV-DRS measurements provided valid information about Ce4+ ← O2− and Ce3+ ← O2− charge transfer transitions. XPS studies revealed the presence of cerium in both Ce3+ and Ce4+ oxidation states. The ceria–zirconia combination exhibited better oxygen storage capacity (OSC) and CO oxidation activity when compared to other samples. The significance of present synthesis method lays mostly on its simplicity, flexibility, and the easy control of different experimental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rao CNR (1994) Chemical approaches to the synthesis of inorganic materials. Wiley Eastern Limited, New Delhi

    Google Scholar 

  2. Fraigi LB, Lamas DG, de Reca NEW (2001) Mater Lett 47:2001

    Article  Google Scholar 

  3. Bhaduri S, Bhaduri SB, Zhou E (1998) J Mater Res 13:156

    Article  CAS  Google Scholar 

  4. Bhaduri S, Bhaduri SB, Prisbery KA (1999) J Mater Res 14:3571

    Article  CAS  Google Scholar 

  5. Venkatachari KR, Huang D, Ostrander SP, Schulze WA, Stangle GC (1995) J Mater Res 10:748

    Article  CAS  Google Scholar 

  6. Schafer J, Sigmund W, Roy S, Aldinger F (1997) J Mater Res 12:2518

    Article  CAS  Google Scholar 

  7. Garcia R, Hirata GA, Mckittrick J (2001) J Mater Res 16:1059

    Article  CAS  Google Scholar 

  8. Roy S, Sigmund W, Aldinger F (1999) J Mater Res 14:1524

    Article  CAS  Google Scholar 

  9. Yong-hua L, Rong L, Yi-Yi L (2001) J Alloys Compd 319:108

    Article  Google Scholar 

  10. Li L, Saita I, Saito K, Akiyama T (2002) Intermetallics 10:927

    Article  CAS  Google Scholar 

  11. Greca MC, Moraes C, Segadaes AM (2001) Appl Catal A Gen 216:267

    Article  CAS  Google Scholar 

  12. Civera A, Pavese M, Saracco G, Specchia V (2003) Catal Today 83:199

    Article  CAS  Google Scholar 

  13. Vasylkiv O, Sakka Y, Skorokhod VV (2007) J Eur Ceram Soc 27:585

    Article  CAS  Google Scholar 

  14. Vasylkiv O, Sakka Y (2005) Nano Lett 5:2598

    Article  CAS  Google Scholar 

  15. Mingos DMP, Whittaker AG (1996) In: van Eldik R, Hubbard CD (eds) Chemistry under extreme or non-classical conditions. Wiley, New York, p 479

    Google Scholar 

  16. Shao Z, Halle SA (2004) Nature 431:170

    Article  CAS  Google Scholar 

  17. Laosiripojana N, Assabumrungrat S (2005) Appl Catal B Envi 60:107

    Article  CAS  Google Scholar 

  18. Kharton VV, Kovalevsky AV, Viskup AP, Shaula AL, Figueiredo FM, Naumovich EN, Marques FMB (2003) Solid State Ionics 160:247

    Article  CAS  Google Scholar 

  19. Levy C, Guizard C, Julbe A (2004) Sep Purif Technol 32:327

    Article  Google Scholar 

  20. Yin X, Hong L, Liu Z-L (2006) Appl Catal A Gen 300:75

    Article  CAS  Google Scholar 

  21. Damyanova S, Bueno JMC (2003) Appl Catal A Gen 253:135

    Article  CAS  Google Scholar 

  22. Ozaki T, Masui T, Machida K-I, Adachi G-Y, Sakata T, Mori H (2000) Chem Mater 12:643

    Article  CAS  Google Scholar 

  23. Aneggi E, de Leitenburg C, Dolcetti G, Trovarelli A (2006) Catal Today 114:40

    Article  CAS  Google Scholar 

  24. Mishra VS, Mahajani VV, Joshi JB (1995) Ind Eng Chem Res 34:2

    Article  CAS  Google Scholar 

  25. Zafiris GS, Gorte RJ (1993) J Catal 139:561

    Article  CAS  Google Scholar 

  26. Jacobs G, Khalid S, Patterson PM, Sparks DE, Davis BH (2004) Appl Catal A Gen 268:255

    Article  CAS  Google Scholar 

  27. Montoya JA, Romero E, Gimon C, Del Angel P, Monzon A (2000) Catal Today 63:71

    Article  CAS  Google Scholar 

  28. Craciun R, Daniell W, Knozinger H (2002) Appl Catal A Gen 230:153

    Article  CAS  Google Scholar 

  29. Kawi S, Tang YP, Hidajat K, Yu LE (2005) J Metastable Nanocryst Mater 23:95

    Article  CAS  Google Scholar 

  30. Neylon MK, Castagnola MJ, Castagnola NB, Marshall ChL (2004) Catal Today 96:53

    Article  CAS  Google Scholar 

  31. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New York

    Google Scholar 

  32. Briggs D, Seah MP (1990) Practical surface analysis: Auger and X-ray photoelectron spectroscopy, vol 1, 2nd edn. Wiley, New York

    Google Scholar 

  33. Wagner CD, Riggs WM, Davis LE, Moulder JF (1978) In: Muilenberg GE (ed) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie, MN

    Google Scholar 

  34. Chen Q, Shi Y, Chen J, Shi J (2005) J Mater Res 20:1409

    Article  CAS  Google Scholar 

  35. Fagherazzi G, Polizzi S, Bettinelli M, Speghini A (2000) J Mater Res 15:586

    Article  CAS  Google Scholar 

  36. Fumo DA, Morelli MR, Segadaes AM (1996) Mater Res Bull 31:1243

    Article  CAS  Google Scholar 

  37. Purohit RD, Sharma BP, Pillai KT, Tyagi AK (2001) Mater Res Bull 36:2711

    Article  CAS  Google Scholar 

  38. Patil KC, Aruna ST, Ekambaram S (1997) Curr Opin Solid State Mater Sci 2:158

    Article  CAS  Google Scholar 

  39. Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Mater Lett 10:6

    Article  CAS  Google Scholar 

  40. Reddy BM, Reddy GK, Khan A, Ganesh I (2007) J Mater Sci 42:3557. doi:https://doi.org/10.1007/s10853-007-1560-7

    Article  CAS  Google Scholar 

  41. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) J Phys Chem B 107:5162

    Article  CAS  Google Scholar 

  42. Preuss A, Gruehn R (1994) J Solid State Chem 110:363

    Article  CAS  Google Scholar 

  43. Dutta G, Waghmare UV, Baidya T, Hegde MS, Priolkar KR, Sarode PR (2006) Chem Mater 18:3249

    Article  CAS  Google Scholar 

  44. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2003) Langmuir 19:3025

    Article  CAS  Google Scholar 

  45. Reddy BM, Lakshmanan P, Bharali P, Saikia P, Thrimurthulu G, Muhler M, Grunert W (2007) J Phys Chem C 111:10478

    Article  CAS  Google Scholar 

  46. Martinez-Arias A, Fernandez-Garcia M, Salamanca LN, Valenzuela RX, Conesa JC, Soria J (2000) J Phys Chem B 104:4038

    Article  CAS  Google Scholar 

  47. Shyu JZ, Weber WH, Gandhi HS (1988) J Phys Chem 92:4964

    Article  CAS  Google Scholar 

  48. Lin X-M, Li L-P, Li G-S, Su W-H (2001) Mater Chem Phys 69:236

    Article  CAS  Google Scholar 

  49. Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC (2002) J Phys Chem B 106:10964

    Article  CAS  Google Scholar 

  50. Spanier JE, Robinson RD, Zhang F, Chan S-W, Herman IP (2001) Phys ReV B 64:245407

    Article  Google Scholar 

  51. Weber WH, Hass KC, McBride JR (1993) Phys Rev B 48:178

    Article  CAS  Google Scholar 

  52. McBride JR, Hass KC, Poindexter BD, Weber WH (1994) J Appl Phys 76:2435

    Article  CAS  Google Scholar 

  53. Wachs IE, Deo G (1991) J Phys Chem 95:5889

    Google Scholar 

  54. Yashima M, Arashi H, Kakihana M, Yoshimura M (1994) J Am Ceram Soc 77:1067

    Article  CAS  Google Scholar 

  55. Weckhuysen BM, Schoonheydt RA (1999) Catal Today 49:441

    Article  CAS  Google Scholar 

  56. Reddy BM, Bharali P, Saikia P, Park S-E, van den Berg MWE, Muhler M, Grunert W (2008) J Phys Chem C 112:11729

    Article  CAS  Google Scholar 

  57. Escribano VS, Lopez EF, Panizza M, Resini C, Amores JMG, Busca G (2003) Solid State Sci 5:1369

    Article  Google Scholar 

  58. Rango R, Kaspar G, Meriani S, di Monte R, Graziani M (1994) Catal Lett 24:107

    Article  Google Scholar 

  59. Burroughs P, Hamnett A, Orchard A, Thornton G (1976) J Chem Soc Dalton Trans 1686

  60. Pfau A, Schierbaum KD (1994) Surf Sci 321:71

    Article  CAS  Google Scholar 

  61. Barr TL, Fries CE, Cariati F, Bart JCJ, Giordano N (1983) J Chem Soc Dalton Trans 1825

  62. Bensalem A, Bozon-Verduraz F, Delamar M, Bugli G (1995) Appl Catal A Gen 121:81

    Article  CAS  Google Scholar 

  63. Noronha FB, Fendley EC, Soares RR, Alvarez WE, Resasco DE (2001) Chem Eng J 82:21

    Article  CAS  Google Scholar 

  64. Biener J, Baumer M, Wang J, Madrix R (2000) J Surf Sci 450:12

    Article  CAS  Google Scholar 

  65. Galtayries A, Sporken R, Riga J, Blanchard G, Caudano R (1998) J Electron Spectrosc Relat Phenom 88–91:951

    Article  Google Scholar 

  66. Reddy BM, Chowdhury B, Reddy EP, Fernandez A (2001) Appl Catal A Gen 213:279

    Article  CAS  Google Scholar 

  67. Wang S-P, Zheng X-C, Wang X-Y, Wang X-R, Zhang S-M, Yu L-H, Huang W-P, Wu S-H (2005) Catal Lett 105:163

    Article  CAS  Google Scholar 

  68. Reddy BM, Lakshmanan P, Loridant S, Yamada Y, Kobayashi T, Cartes CL, Rojas TC, Fernandez A (2006) J Phys Chem B 110:9140

    Article  CAS  Google Scholar 

  69. Reddy BM, Rao KN, Reddy GK, Khan A, Park S-E (2007) J Phys Chem B 111:18751

    Article  CAS  Google Scholar 

  70. Ozawa M, Loong CK (1999) Catal Today 50:329

    Article  CAS  Google Scholar 

  71. Reddy BM, Saikia P, Bharali P, Yamada Y, Kobayashi T, Muhler M, Grunert W (2008) J Phys Chem C 112:16393

    Article  CAS  Google Scholar 

  72. Reddy BM, Bharali P, Saikia P (2008) Catal Surv Asia 12:214

    Article  CAS  Google Scholar 

  73. Boaro M, Vicario M, de Leitenburg C, Dolcetti G, Trovarelli A (2003) Catal Today 77:407

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GKR thank UGC, New Delhi for senior research fellowship. The support of CICECO is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjaram M. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, B.M., Reddy, G.K., Ganesh, I. et al. Single step synthesis of nanosized CeO2–MxOy mixed oxides (MxOy = SiO2, TiO2, ZrO2, and Al2O3) by microwave induced solution combustion synthesis: characterization and CO oxidation. J Mater Sci 44, 2743–2751 (2009). https://doi.org/10.1007/s10853-009-3358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3358-2

Keywords

Navigation