Skip to main content
Log in

Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Geopolymerization is an innovative technology that can transform several solid aluminosilicate materials into useful products called geopolymers or inorganic polymers. Although the geopolymerization mechanism is not well understood, the most proposed mechanism includes four parallel stages: (a) dissolution of solid aluminosilicate materials in alkaline sodium silicate solution, (b) oligomerization of Si and/or Si–Al in aqueous phase, (c) polymerization of the oligomeric species, and (d) bonding of undissolved solid particles in the polymer. It is obvious that polymerization in sodium silicate solutions comprises a fundamental process in geopolymerization technology. Therefore, this article aims at studying experimentally the polymerization stage in synthetic pure sodium silicate solutions. The structure of sodium silicate gels as a function of the SiO2/Na2O molar ratio is examined and their hardness as well as hydrolytic stability are determined. In addition, the effect of aluminum incorporation in the hydrolytic stability of these gels is also examined. Finally, the structure of sodium silicate and aluminosilicate gels is correlated to the measured properties drawing very useful conclusions that could be applied on geopolymerization technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Davidovits J (1999) Geopolymer ‘99 2nd international conference, Saint-Quentin, France, pp 9–39

  2. Xu H (2002) PhD Thesis, Department of Chemical Engineering, University of Melbourne

  3. Davidovits J (2005) Proceedings of the world congress geopolymer 2005, Saint-Quentin, France, pp 9–15

  4. Palomo A, Grutzeck MW, Blanco MT (1999) Cem Concr Res 29:1323

    Article  CAS  Google Scholar 

  5. Cheng TW, Chiu JP (2003) Miner Eng 16:205

    Article  CAS  Google Scholar 

  6. Pacheco-Torgal F, Castro-Gomes JP, Jalali S (2005) Proceedings of the world congress geopolymer 2005, Saint-Quentin, France, pp 93–98

  7. Panias D, Giannopoulou IP, Perraki T (2007) Colloids Surf A Physicochem Eng Aspects 301:246

    Article  CAS  Google Scholar 

  8. Maragkos I, Giannopoulou IP, Panias D (2009) Miner Eng 22:196

    Article  CAS  Google Scholar 

  9. Dimas D, Giannopoulou IP, Panias D (2009) Miner Process Extr Metall Rev (in press)

  10. Davidovits J (2008) Geopolymer chemistry & applications, 2nd edn, chapters 15–16. Institute Géopolymère, Saint-Quentin, pp 333–365

  11. McCormick AV, Bell AT, Radke CJ (1989) J Phys Chem 93(5):1737

    Article  CAS  Google Scholar 

  12. Duxson P, Fernandez-Jimenez A, Provis JL, Luckey GC, Palomo A, van Deventer JSJ (2007) J Mater Sci 42:2917. doi:https://doi.org/10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  13. Aagard P, Helgeson HC (1982) Am J Sci 282:237

    Article  Google Scholar 

  14. Phair JW, Van Deventer JSJ (2002) Int J Miner Process 66:121

    Article  CAS  Google Scholar 

  15. Davidovits J (2008) Geopolymer chemistry & applications, 2nd edn, chapter 4. Institute Géopolymère, Saint-Quentin, pp 61–65

  16. Davidovits J (1999) Proceedings of the geopolymer international conference 1999, Saint-Quentin, France, pp 9–40

  17. Warren BE, Biscoe L (1938) J Am Ceram Soc 21(2):49

    Article  CAS  Google Scholar 

  18. Warren BE, Loring AD (1935) J Am Ceram Soc 18(1–12):269

    Article  CAS  Google Scholar 

  19. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York, pp 336–342

    Google Scholar 

  20. Sefcik J, McCormick AV (1997) Ceram Process 43:2773

    CAS  Google Scholar 

  21. Knight CTG, Balec RJ, Kinrade SD (2007) Angew Chem 119:8296

    Article  Google Scholar 

  22. Bass JL, Turner GL (1997) J Phys Chem B 101:10638

    Article  CAS  Google Scholar 

  23. Florke OW et al (2008) Silica, Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co., Weinheim

    Google Scholar 

  24. Elliott SR (2001) Amorphous materials: medium-range order, encyclopedia of materials: science and technology. Elsevier Science Ltd., pp 215–220

    Book  Google Scholar 

  25. Hadke M, Mozgawa W (1993) Vib Spectrosc 5:75

    Article  Google Scholar 

  26. Clayden NJ, Esposito S, Aronne A, Pernice P (1999) J Non-Cryst Solids 258:11

    Article  CAS  Google Scholar 

  27. Lecomte I, Henrist C, Liegeois M, Maseri F, Rulmont A, Cloots R (2006) J Eur Ceram Soc 26:3789

    Article  CAS  Google Scholar 

  28. Sitarz M, Handke M, Mozgawa W (2000) Spectrochemica Acta A 56:1819

    Article  Google Scholar 

  29. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  30. Morrow BA, McFarlan AJ (1991) Langmuir 7:1695

    Article  CAS  Google Scholar 

  31. Burneau A, Barres O, Gallas JP, Lavalley JC (1990) Langmuir 6:1364

    Article  CAS  Google Scholar 

  32. Jantzen CM, Plodinec MJ (1984) J Non-Cryst Solids 67:207

    Article  CAS  Google Scholar 

  33. Sundararajan G, Roy M (2001) Hardness testing, encyclopedia of materials: science and technology. Elsevier Science Ltd., Amsterdam, pp 3728–3736

    Book  Google Scholar 

  34. Richerson DW (1992) Modern ceramic engineering: properties, processing and use in design. Marcel Dekker, pp 179

    Google Scholar 

  35. Yamasaki TK, Nishioka M, Yanagisawa K, Ioku K (1992) J Mater Sci Lett 11(4):233

    Article  CAS  Google Scholar 

  36. Park CY, Yoon SD, Yun YH (2007) J Ceram Process Res 8(6):435

    Google Scholar 

  37. Ischenko V, Harshe R, Riedel R, Woltersdorf J (2006) J Organomet Chem 691:4086

    Article  CAS  Google Scholar 

  38. Davidovits J (2008) Geopolymer chemistry & applications, 2nd edn, chapter 26. Institute Géopolymère, Saint-Quentin, pp 547–574

Download references

Acknowledgement

The authors would like to thank the Senator Committee of Basic Research of the National Technical University of Athens, Programme “PEBE-2007”, R.C.·No.:65/1634 for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Panias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimas, D., Giannopoulou, I. & Panias, D. Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. J Mater Sci 44, 3719–3730 (2009). https://doi.org/10.1007/s10853-009-3497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3497-5

Keywords

Navigation