Skip to main content
Log in

Interfacial study of Crofer 22 APU interconnect-SABS-0 seal glass for solid oxide fuel/electrolyzer cells

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In planar solid oxide fuel and electrolyzer cells, compatibility and thermochemical stability of interconnect-seal glass interface is essential in order to avoid mixing and leakage of different gases and degradation of cell performances. In the present work, interfacial compatibility and thermochemical stability are studied for an alkaline earth silicate based glass (SABS-0) and Crofer 22 APU interconnect system with respect to thermal treatment temperature (700–850 °C) and time (0–100 h). The study has been carried out in argon to avoid complications from oxidation. Even though pore and crack-free interface is obtained and maintained for all the thermal treatment conditions, there are simultaneous diffusion of the Crofer 22 APU and the SABS-0 glass elements, chemical reaction at the Crofer 22 APU/SABS-0 interface, and devitrification of the SABS-0 glass itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. EG & G Technical Services (2004) Fuel cell handbook, 7th edn. US Department of Energy, Office of Fossil Energy, National Energy Technological Laboratory, pp 7–12

  2. Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells. Elsevier, Oxford, p 217

    Google Scholar 

  3. Lessing PA (2007) J Mater Sci 42:3465. doi:10.1007/s10853-006-0409-9

    Article  ADS  CAS  Google Scholar 

  4. Fergus JW (2005) J Power Sources 147:46

    Article  CAS  Google Scholar 

  5. Batfalsky P, Haanappel VAC, Malzbender J, Menzler NH, Shemet V, Vinke IC, Steinbrech RW (2006) J Power Sources 155:128

    CAS  Google Scholar 

  6. Yang Z, Xia G, Meinhardt KD, Weil KS, Stevenson JW (2004) J Mater Eng Perform 13:327

    Article  CAS  Google Scholar 

  7. Yang Z, Meinhardt KD, Stevenson JW (2003) J Electrochem Soc 150:A1095

    Article  CAS  Google Scholar 

  8. Haanappel VAC, Shemet V, Vinke IC, Gross SM, Koppitz TH, Menzler NH, Zahid M, Quadakkers WJ (2005) J Mater Sci 40:1583. doi:10.1007/s10853-005-0657-0

    Article  ADS  CAS  Google Scholar 

  9. Lahl N, Bahadur D, Singh K, Singheiser L, Hilpert K (2002) J Electrochem Soc 149:A607

    Article  CAS  Google Scholar 

  10. Chou YS, Stevenson JW, Singh P (2007) J Electrochem Soc 154:B644

    Article  CAS  Google Scholar 

  11. Chou YS, Stevenson JW, Gow RN (2007) J Power Sources 170:395

    Article  CAS  Google Scholar 

  12. Smeacetto F, Salvo M, Ferraris M, Cho J, Boccaccini AR (2008) J Eur Ceram Soc 28:61

    Article  CAS  Google Scholar 

  13. Melling PJ, Vempati CJ, Allmatt AR, Jacobs PWM (1981) Phys Chem Glasses 22:49

    CAS  Google Scholar 

  14. Ogasawara K, Kameda H, Matsuzaki Y, Sakurai T, Uehara T, Toji A, Sakai N, Yamaji K, Horita T, Yokokawa H (2007) J Electrochem Soc 154:B657

    Article  CAS  Google Scholar 

  15. Lu K, Mahapatra MK (2008) J Appl Phys 104:074910

    Article  ADS  Google Scholar 

  16. Mahapatra MK, Lu K, Bodnar RJ (2009) Appl Phys A 95:493

    Article  ADS  CAS  Google Scholar 

  17. Mahapatra MK, Lu K (2008) J Power Sources 185:993

    Article  CAS  Google Scholar 

  18. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publishing Company Inc., Philippines, pp 292–294

    Google Scholar 

  19. Smeacetto F, Salvo M, Ferraris M, Casalegno V, Asinari P, Chrysanthou A (2008) J Eur Ceram Soc 28:2521

    Article  CAS  Google Scholar 

  20. Lara C, Pascual MJ, Durán A (2007) Phys Chem Glasses Eur J Glass Sci Tech B 48:218

    CAS  Google Scholar 

  21. Konysheva E, Laatsch J, Wessel E, Tietz F, Christiansen N, Singheiser L, Hilpert K (2006) Solid State Ionics 177:923

    Article  CAS  Google Scholar 

  22. Mahapatra MK, Story C, Lu K, Reynolds WT Jr (2007) Energy: fuel cells: materials, processing, manufacturing and power management technologies. In: Proceedings of materials science and technology, Detroit, MI, USA, September 16–20, pp 371–380. Organizers: Singh P, Azad, Collins DC, Kumta PN, Legzdins C, Manthiram A, Manivannan A, Sundaram SK, Yang ZG

  23. Mahapatra MK, Lu K, Reynolds WT Jr (2008) J Power Sources 179:106

    Article  CAS  Google Scholar 

  24. Kumar P, Greenhut VA (1990) Metal-ceramic joining. TMS Minerals, Metals, Materials, Warrendale, PA, pp 3–11

    Google Scholar 

  25. Yang Z, Xia G, Wang CM, Nie Z, Templeton J, Stevenson JW, Singh P (2008) J Power Sources 183:660

    Article  CAS  Google Scholar 

  26. Quadadakkers WJ, Shemet V, Singheiser L (2003) US Patent 0,059,335

  27. Beranger G, Armanet F, Lambertin M (1989) In: Lang E (ed) The role of active elements in the oxidation behavior of high temperature metals and alloys. Elsevier Science Publishing Co. Inc., New York, pp 33–51

    Google Scholar 

  28. Bennet MJ, Moon DP (1989) In: Lang E (ed) The role of active elements in the oxidation behavior of high temperature metals and alloys. Elsevier Science Publishing Co. Inc., New York, pp 111–129

    Google Scholar 

  29. Lobnig RE, Schmidt HP, Hennesen K, Grabke HJ (1992) Oxid Met 37:81

    Article  CAS  Google Scholar 

  30. Cox MGC, McEnaney B, Scott VD (1972) Philos Mag 2:839

    Article  ADS  Google Scholar 

  31. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New York

    Google Scholar 

  32. Cromier L, Calas G, Creux S, Gaskell PH, Bouchet-Fabre B, Hannon AC (1999) Phys Rev B 59:13517

    Article  ADS  Google Scholar 

  33. Schaller T, Stebbins JF, Wilding MC (1999) J Non-Cryst Solids 243:146

    Article  ADS  CAS  Google Scholar 

  34. Wilding MC, Navrotsky A (2000) J Non-Cryst Solids 265:238

    Article  ADS  CAS  Google Scholar 

  35. Jiang N, Silox J (2000) J Appl Phys 87:3768

    Article  ADS  CAS  Google Scholar 

  36. Volf MB (1984) Chemical approaches to glass: glass science and technology, vol 7. Elsevier, Amsterdam, pp 83–88

    Google Scholar 

  37. Kim YW, Belton GR (1974) Metal Trans 5:1811

    Article  CAS  Google Scholar 

  38. Ebbinghaus BB (1993) Combust Flame 93:119

    Article  CAS  Google Scholar 

  39. Caplan D, Cohen M (1961) J Electrochem Soc 108:438

    Article  CAS  Google Scholar 

  40. Pask JA (1987) In: Moddeman WE, Merten CW, Kramer DP (eds) Technology of glass,ceramic or glass-ceramic to metal sealing. The American Society of Mechanical Engineers, New York, pp 1–7

    Google Scholar 

Download references

Acknowledgements

This material is based on work supported by Department of Energy under Award Number DE-FC07-06ID14739. The SEM analysis was done in Nanoscale Characterization and Fabrication Laboratory (NCFL), Virginia Tech. The authors are indebted to Dr. Zhenguo “Gary” Yang, Pacific Northwest National Laboratory, Richland, Washington, for providing Crofer 22 APU alloy for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahapatra, M.K., Lu, K. Interfacial study of Crofer 22 APU interconnect-SABS-0 seal glass for solid oxide fuel/electrolyzer cells. J Mater Sci 44, 5569–5578 (2009). https://doi.org/10.1007/s10853-009-3781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3781-4

Keywords

Navigation