Skip to main content
Log in

Solvent thermal synthesis and gas-sensing properties of Fe-doped ZnO

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, pure ZnO microbullets, ZnO–ZnFe2O4 composite, and ZnO–Fe2O3–ZnFe2O4 composite with micron structured balloons, rods, and particles were prepared by a simple solvent thermal process using methanol or ethanol as solvents. The influence of solvents on the composition and morphology of the products was studied, and their gas-sensing properties were also investigated. The morphology of ZnO microbullets synthesized in ethanol is similar to but more uniform than that of ZnO microbullets synthesized in methanol. The Fe-doped ZnO synthesized in ethanol contains many micron particles homogeneously dispersing on the surface of the microbullets, which is composed of hexagonal wurtzite ZnO and franklinite ZnFe2O4, while Fe-doped ZnO prepared in methanol consists of micron structured balloons, rods, and particles, which is composed of hexagonal wurtzite ZnO, hematite Fe2O3, and franklinite ZnFe2O4. Compared with pure ZnO and ZnO–ZnFe2O4 composite, the ZnO–Fe2O3–ZnFe2O4 composite presented high response, rapid response/recovery characteristics, good selectivity, and excellent stability to acetone at relatively low operating temperature of 190 °C. This sensor could detect acetone in wide range of 1–1000 ppm, which was expected to be a promising gas sensor for detecting acetone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Navale SC, Ravi V, Mulla IS, Gosavi SW, Kulkarni SK (2007) Sens Actuator B 12:382

    Article  Google Scholar 

  2. Zhu BL, Xie CS, Wang AH, Wu J, Wu R, Liu J (2007) J Mater Sci 42:5416. doi:https://doi.org/10.1007/s10853-006-0768-2

    Article  CAS  Google Scholar 

  3. Nenov T, Yordanov S (1992) Sens Actuator B 8:117

    Article  CAS  Google Scholar 

  4. Zhang WD, Zhang WH, Ma XY (2009) J Mater Sci 44:4677. doi:https://doi.org/10.1007/s10853-009-3716-0

    Article  CAS  Google Scholar 

  5. Tien LC, Sadik PW, Norton DP, Voss LF, Pearton SJ (2005) Appl Phys Lett 87:222106

    Article  Google Scholar 

  6. Shinde VR, Gujar TP, Lokhande CD (2007) Sens Actuator B 123:701

    Article  CAS  Google Scholar 

  7. Chang SJ, Hsueh TJ, Chen IC, Hsieh SF, Chang SP, Hsu CL, Lin YR, Huang BR (2008) IEEE T Nano Tech 7:754

    Article  Google Scholar 

  8. Kim KW, Cho PS, Kim SJ, Lee JH, Kang CY, Kim JS, Yoon SJ (2007) Sens Actuator B 123:318

    Article  CAS  Google Scholar 

  9. Zhu BL, Xie CS, Wang WY, Huang KJ, Hu JH (2004) Mater Lett 58:624

    Article  CAS  Google Scholar 

  10. Aygün S, Cann D (2005) Sens Actuator B 106:837

    Article  Google Scholar 

  11. Ge CQ, Xie CS, Cai SZ (2007) Mater Sci Eng B 137:53

    Article  CAS  Google Scholar 

  12. Tang HX, Yan M, Zhang H, Li SZ, Ma XF, Wang M, Yang DR (2006) Sens Actuator B 114:910

    Article  CAS  Google Scholar 

  13. Arshak K, Gaidan I (2005) Sens Actuator B 111–112:58

    Article  Google Scholar 

  14. Kuo GH, Wang HP, Hsu HH, Wang J, Chiu YM, Jou C, Hsu TF, Chen FL (2009) J Nanomater 2009: 316035 (1-3)

  15. Xu JQ, Han JJ, Zhang Y, Sun YA, Xie B (2008) Sens Actuator B 132:334

    Article  CAS  Google Scholar 

  16. Shishiyanu ST, Shishiyanu TS, Lupan OI (2005) Sens Actuator B 107:379

    Article  CAS  Google Scholar 

  17. Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR (2006) Sens Actuator B 115:247

    Article  CAS  Google Scholar 

  18. Li QH, Liang YX, Wan Q, Wang TH (2004) Appl Phys Lett 85:6389

    Article  CAS  Google Scholar 

  19. Lupan O, Chai GY, Chow L (2007) Microelectr J 38:1211

    Article  CAS  Google Scholar 

  20. Gong H, Wang YJ, Teo SC, Huang L (1999) Sens Actuators B 54:232

    Article  CAS  Google Scholar 

  21. Jing Z, Wu S (2006) Mater Lett 60:952

    Article  CAS  Google Scholar 

  22. Jie Z, Hua HL, Shan G, Hui Z, Gui ZJ (2006) Sens Actuators B 115:460

    Article  Google Scholar 

  23. Xie H, Yang Q, Sun X, Huang Y (2006) Sens Actuators B 113:887

    Article  CAS  Google Scholar 

  24. Li X, Zhang G, Cheng F, Guo B, Chen J (2006) J Electrochem Soc 153:H133

    Article  CAS  Google Scholar 

  25. Jing Z, Wang Y, Wu S (2006) Sens Actuators B 113:177

    Article  CAS  Google Scholar 

  26. You LM, Huo LH, Cheng XL, Zhao H, Gao S (2008) Chin J Inorg Chem 24:1035

    CAS  Google Scholar 

  27. Jiang Y, Song W, Xie C, Wang A, Zeng D, Hu M (2006) Mater Lett 60:1374

    Article  CAS  Google Scholar 

  28. Zhang WH, Zhang WD (2008) Sens Actuator B 134:403

    Article  CAS  Google Scholar 

  29. Huang Y, Lin J, Ding XX, Tang C, Gu CZ, Qi SR (2007) Mater Lett 61:697

    Article  CAS  Google Scholar 

  30. Watson J (1984) Sens Actuators 5:29

    Article  CAS  Google Scholar 

  31. Huang XJ, Meng FL, Pi ZX, Xu WH, Liu JH (2004) Sens Actuators B 99:444

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the work by the Research Fund for the Doctoral Program of Higher Education (RFDP) under grant 20070561008 and Natural Science Foundation of China under grant 20773041 is greatly acknowledged. J.F. Zhou would like to thank Student Research Program of SCUT for the financial aid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-De Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, WH., Zhang, WD. & Zhou, JF. Solvent thermal synthesis and gas-sensing properties of Fe-doped ZnO. J Mater Sci 45, 209–215 (2010). https://doi.org/10.1007/s10853-009-3920-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3920-y

Keywords

Navigation