Skip to main content
Log in

Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To investigate the initial mechanical strength and the degradation behaviour with the associated changes in mechanical properties of magnesium-based osteosynthesis implants, 30 rabbits were implanted with cylindrical pins of the alloys MgCa0.8 (magnesium with 0.8 wt% calcium), LAE442 (magnesium with 4 wt% lithium, 4 wt% aluminium and 2 wt% rare earths) and WE43 (magnesium with 4 wt% yttrium and 3 wt% rare earths). The implants were inserted into the medullary cavity of both tibiae. After 3 and 6 months, each half of the animals was euthanized, respectively, and the implants were taken out. A determination of volume, three-point bending tests, scanning electron microscopy (SEM) and energy dispersive X-ray analyses as well as metallographic and μ-computed tomography examinations were accomplished. All implants were clinically well tolerated. MgCa-implants showed the least initial strength and the highest loss in volume after 6 months. SEM- and μ-computed tomography examinations revealed a pronounced pitting corrosion. Therefore, their use as degradable implant material seems to be limited. LAE442 has the best initial strength which seems to be sufficient for an application in weight-bearing bones. The degradation behaviour is very constant. However, possible unknown side effects of the rare earths have to be excluded in further investigations on biocompatibility. Considering all results of WE43, its application as osteosynthesis material for fracture repair is ineligible due to its heterogeneous and unpredictable degradation behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hofmann GO (1995) Arch Orthop Trauma Surg 114:123

    Article  CAS  Google Scholar 

  2. Meyer-Lindenberg A, Pruss M, Fehr M, Brunnberg L (1996) Prakt Tierarzt 77:987

    Google Scholar 

  3. Rehm KE, Helling HJ, Gatzka C (1997) Orthopade 26:489

    Google Scholar 

  4. Moses PA, Lewis DD, Lanz OI, Stubbs WP, Cross AR, Smith KR (2002) Aust Vet J 80:336

    Article  CAS  Google Scholar 

  5. Syrcle JA, Cook JL (2004) Vet Comp Orthop Traumatol 17:121

    Article  Google Scholar 

  6. Long M, Rack HJ (1998) Biomaterials 19:1621

    Article  CAS  Google Scholar 

  7. Disegi JA, Eschbach L (2000) Injury 31(Suppl 4):2

    Article  Google Scholar 

  8. Wintermantel E, Ha S (1998) Biokompatible Werkstoffe und Bauweisen. Springer, Berlin

    Book  Google Scholar 

  9. Raiha JE (1992) Clin Mater 10:35

    Article  CAS  Google Scholar 

  10. Kannan MB, Raman RK (2008) Biomaterials 29:2306

    Article  CAS  Google Scholar 

  11. Aluminium-Zentrale Düsseldorf (2000) Magnesiumtaschenbuch. Aluminium, Düsseldorf

    Google Scholar 

  12. Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin

    Google Scholar 

  13. Turner CH (1992) J Biomech 25:1

    Article  CAS  Google Scholar 

  14. Tsubota K, Suzuki Y, Yamada T, Hojo M, Makinouchi A, Adachi T (2009) J Biomech 42(8):1088

    Article  Google Scholar 

  15. Verbrugge J (1934) La Press Med 23:460

    Google Scholar 

  16. Switzer E (2005) Resorbierbares metallisches Osteosynthesematerial. Dissertation, Stiftung Tierärztliche Hochschule, Hannover

  17. Krause A, Hackenbroich C, von der Höh N, Wagner S, Bormann D, Hassel T, Windhagen H, Meyer-Lindenberg A (2005) Biomaterialien 6:190

    Google Scholar 

  18. Witte F, Michael B, Klement M, Goede F, Wirth CJ, Windhagen H (2005) In: Transactions of the 51st Annual Meeting of the Orthopaedic Research Society, Washington, DC. https://doi.org/www.ors.org/web/Transactions.asp; No. 0989

  19. Sha M, Guo Z, Fu J, Li J, Yuan CF, Shi F, Li SJ (2009) Acta Orthop 80:135

    Article  Google Scholar 

  20. Uctasli MB, Arisu HD, Lasilla LV, Valittu PK (2008) Eur J Dent 2:263

    Article  Google Scholar 

  21. Meyer-Lindenberg A, Krause A, Krause C, Bormann D, Windhagen H (2007) Biomaterialien 8:180

    Google Scholar 

  22. Lass J (2005) Untersuchungen zur Entwicklung einer magnesiumgerechten Strangpresstechnologie. Books on demand, Norderstedt

    Google Scholar 

  23. Xu L, Yu G, Zhang E, Pan F, Yang K (2007) J Biomed Mater Res A 83:703

    Article  Google Scholar 

  24. Li Z, Gu X, Lou S, Zheng Y (2008) Biomaterials 29:1329

    Article  CAS  Google Scholar 

  25. von der Höh N, Krause A, Hackenbroich C, Bormann D, Lucas A, Meyer-Lindenberg A (2006) Dtsch Tierarztl Wochenschr 113:439

    Google Scholar 

  26. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H (2006) Biomaterials 27:1013

    Article  CAS  Google Scholar 

  27. Song G, Atrens A (1999) Adv Eng Mater 1:11

    Article  CAS  Google Scholar 

  28. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H (2005) Biomaterials 26:3557

    Article  CAS  Google Scholar 

  29. Revell P, Damien E, Zhang X, Evans P, Howlett C (2004) Key Eng Mater 254–256:447

    Google Scholar 

  30. Song G, Atrens A (2003) Adv Eng Mater 5:837

    Article  CAS  Google Scholar 

  31. von der Höh N, Bormann D, Lucas A, Denkena B, Hackenbroich C, Meyer-Lindenberg A (2009) Adv Eng Mater 11:B47

    Article  Google Scholar 

  32. Acarturk O, Lehmicke M, Aberman H, Toms D, Hollinger JO, Fulmer M (2007) J Biomed Mater Res B Appl Biomater. doi:https://doi.org/10.1002/jbm.b.30987

    Article  CAS  Google Scholar 

  33. Pardo A, Merino MC, Coy AE, Arrabal R, Viejo F, Matykina E (2008) Corros Sci 50:823

    Article  CAS  Google Scholar 

  34. Rettig R, Virtanen S (2008) J Biomed Mater Res A 85:167

    Article  Google Scholar 

Download references

Acknowledgement

This study is part of the collaborative research centre (SFB599, Medical University of Hannover, University of Veterinary Medicine Hannover and University of Hannover), which is sponsored by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina von der Höh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, A., von der Höh, N., Bormann, D. et al. Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J Mater Sci 45, 624–632 (2010). https://doi.org/10.1007/s10853-009-3936-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3936-3

Keywords

Navigation