Skip to main content
Log in

Carbon nanotubes: do they toughen brittle matrices?

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of a model CNT-brittle matrix composite system, based on SiO2 glass containing well-dispersed CNTs at up to 15 wt%, allows a direct assessment of the effect of the nanoscale filler on fracture toughness (K IC). Samples were prepared by colloidal heterocoagulation followed by spark plasma sintering. Detailed K IC measurements, using both indentation and notched beam techniques, show a linear improvement with CNT content, with up to a twofold increase of fracture toughness at maximum loading. The results from the two methods used in this study show equivalent trends but differing absolute values; the relative merits of these two approaches to measuring nanocomposite toughness are compared. Possible toughening mechanisms associated with CNT pull-out, crack bridging, and crack deflection are identified, and discussed quantitatively, drawing on conventional short-fibre composite theory and the potential effects of scaling fibre diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thostenson ET, Ren ZF, Chou TW (2001) Compos Sci Technol 61(13):1899

    Article  CAS  Google Scholar 

  2. Shaffer MSP, Sandler JKW (2006) In: Processing and properties of nanocomposites. World Scientific, Singapore, p 1

  3. Lau KT, Hui D (2002) Compos B Eng 33(4):263

    Article  Google Scholar 

  4. Harris PJ (2002) Carbon nanotubes and related structures. Cambridge University Press, Cambridge

    Google Scholar 

  5. Cho J, Boccaccini AR, Shaffer MSP (2009) J Mater Sci 44(8):1934. doi:10.1007/s10853-009-3262-9

    Article  CAS  Google Scholar 

  6. Zhan GD, Kuntz JD, Wan JL, Mukherjee AK (2003) Nat Mater 2(1):38

    Article  CAS  Google Scholar 

  7. Wang XT, Padture NP, Tanaka H (2004) Nat Mater 3(8):539

    Article  CAS  Google Scholar 

  8. Sheldon BW, Curtin WA (2004) Nat Mater 3(8):505

    Article  CAS  Google Scholar 

  9. Jiang DT, Thomson K, Kuntz JD, Ager JW, Mukherjee AK (2007) Scr Mater 56(11):959

    Article  CAS  Google Scholar 

  10. Padture NP, Curtin WA (2008) Scr Mater 58(11):989

    Article  CAS  Google Scholar 

  11. Jiang D, Mukherjee AK (2008) Scr Mater 58(11):991

    Article  CAS  Google Scholar 

  12. Otieno G, Koos AA, Dillon F, Wallwork A, Grobert N, Todd RI (2010) Carbon 48(8):2212

    Article  CAS  Google Scholar 

  13. Ye F, Liu LM, Wang YJ, Zhou Y, Peng B, Meng QC (2006) Scr Mater 55(10):911

    Article  CAS  Google Scholar 

  14. Inam F, Yan HX, Jayaseelan DD et al (2010) J Eur Ceram Soc 30:153

    Article  CAS  Google Scholar 

  15. Inam F, Yan H, Peijs T, Reece MJ (2010) Compos Sci Technol 70:947

    Article  CAS  Google Scholar 

  16. Singh C, Shaffer M, Windle AH (2003) Carbon 41(2):359

    Article  CAS  Google Scholar 

  17. Inam F, Yan H, Reece MJ, Peijs T (2010) Adv Appl Ceram 109(4):240

    Article  CAS  Google Scholar 

  18. Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64(9):533

    Article  CAS  Google Scholar 

  19. Dlouhy I, Reinisch M, Boccaccini AR, Knott JF (1997) Fatigue Fract Eng Mater Struct 20:1235

    Article  CAS  Google Scholar 

  20. Dlouhy I, Holzmann M, Man J, Valka L (1994) Kovove Mater Met Mater 32(1):3

    Google Scholar 

  21. Quinn GD, Bradt RC (2007) J Am Ceram Soc 90(3):673

    Article  CAS  Google Scholar 

  22. Ning JW, Zhang JJ, Pan YB, Guo JK (2004) Ceram Int 30(1):63

    Article  CAS  Google Scholar 

  23. Guo SQ, Sivakumar R, Kagawa Y (2007) Adv Eng Mater 9(1–2):84

    Article  CAS  Google Scholar 

  24. Mukhopadhyay A, Chu BTT, Green MLH, Todd RI (2010) Acta Mater 58:2685

    Article  CAS  Google Scholar 

  25. Xia Z, Riester L, Curtin WA, Li H, Sheldon BW, Liang J, Chang B, Xu JM (2004) Acta Mater 52(4):931

    Article  CAS  Google Scholar 

  26. Matthews FL, Rawlings RD (2003) Composite materials: engineering and science. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  27. Fu SY, Lauke B (1997) J Mater Sci 32(8):1985. doi:10.1023/A:1018593931951

    Article  CAS  Google Scholar 

  28. Kim JK, Mai YW (1991) Compos Sci Technol 41(4):333

    Article  CAS  Google Scholar 

  29. Klug T (1994) J Mater Sci 29(15):4013. doi:10.1007/BF00355963

    Article  CAS  Google Scholar 

  30. Grande DH, Mandell JF, Hong KCC (1988) J Mater Sci 23(1):311. doi:10.1007/BF01174071

    Article  CAS  Google Scholar 

  31. Barber AH, Cohen SR, Kenig S, Wagner HD (2004) Compos Sci Technol 64(15):2283

    Article  CAS  Google Scholar 

  32. Huang YY, Knowles TPJ, Terentjev EM (2009) Adv Mater 21:3945

    Article  CAS  Google Scholar 

  33. Prewo KM (1988) J Mater Sci 23:2745. doi:10.1007/BF00547446

    Article  CAS  Google Scholar 

  34. Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge University Press, Cambridge

    Google Scholar 

  35. Chawla KK (2003) Ceramic matrix composites, 2nd edn. Springer, Berlin

    Google Scholar 

  36. Cho J, Inam F, Reece M, Rehorek L, Dlouhy I, Shaffer M, Boccaccini AR (2010) Unpublished research (paper in preparation)

  37. Evans AG, Zok FW (1994) Solid State Phys 47:177

    Article  CAS  Google Scholar 

  38. Sambell RAJ, Bowen DH, Briggs A, Phillips DC (1972) J Mater Sci 7(6):676. doi:10.1007/BF00549379

    Article  CAS  Google Scholar 

  39. Sambell RAJ, Phillips DC, Bowen DH (1972) J Mater Sci 7(6):663. doi:10.1007/BF00549378

    Article  CAS  Google Scholar 

  40. Wichmann MHG, Schulte K, Wagner HD (2008) Compos Sci Technol 68(1):329

    Article  CAS  Google Scholar 

  41. Peng B, Locascio M, Zapol P, Li S, Mielke SL, Schatz GC, Espinosa HD (2008) Nat Nanotechnol 3:626

    Article  CAS  Google Scholar 

  42. Sun LY, Gibson RF, Gordaninejad F, Suhr J (2009) Compos Sci Technol 69:2392

    Article  CAS  Google Scholar 

  43. Blanco J, Garcia EJ, De Villoria RG, Wardle BL (2009) J Compos Mater 43(8):825

    Article  CAS  Google Scholar 

  44. Kelly A (1970) Proc R Soc A 319:1536

    Google Scholar 

  45. Duncan RK, Chen XYG, Bult JB, Brinson LC, Schadler LS (2010) Compos Sci Technol 70:599

    Article  CAS  Google Scholar 

  46. Chen XY, Beyerlein IJ, Brinson LC (2009) Mech Mater 41(3):279

    Article  Google Scholar 

  47. Chen XY, Beyerlein IJ, Brinson LC (2009) Mech Mater 41(3):293

    Article  Google Scholar 

  48. Launey ME, Ritchie RO (2009) Adv Mater 21(20):2103

    Article  CAS  Google Scholar 

  49. Wang W, Yang K, Gaillard J, Bandaru PR, Rao AM (2008) Adv Mater 20:179

    Article  CAS  Google Scholar 

  50. Dlouhy I, Kotoul M, Vyslouzil T, Chlup Z, Boccaccini AR (2008) J Mater Sci 43:4022. doi:10.1007/s10853-007-2317-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research carried out at IPM, Brno, Czech Republic (chevron notch fracture toughness measurement), was supported by the Czech Science Foundation under grant number 101/09/1821.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Milo S. P. Shaffer or Aldo R. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, J., Inam, F., Reece, M.J. et al. Carbon nanotubes: do they toughen brittle matrices?. J Mater Sci 46, 4770–4779 (2011). https://doi.org/10.1007/s10853-011-5387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5387-x

Keywords

Navigation