Skip to main content
Log in

The diversity of combustion synthesis processing: a review

  • Anniversary Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The harnessing of heat emanating from powder-based exothermic reactions to produce advanced materials has been around for many decades, and is manifested in the process of combustion synthesis (CS). A plethora of work has been published on the topic covering fundamental aspects of the process for a large number of material systems. Over time, CS has been combined with other processes and effects to potentially improve on conventionally produced CS products and alleviate some of the inherent disadvantages of CS. This article discusses processing aspects of CS, and provides a review of CS-related hybrid processes with the intent to exemplify the diversity of CS processing. Approaches such as reactant microstructural design, reactive bulk deformation/compaction processes, reactive casting, laser-assisted CS, activation techniques (field/current, mechanical, microwave), and unconventional heat treatments are discussed together with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AC:

Alternating current

BPR:

Ball-to-powder weight ratio

CAD:

Computer aided design

CS:

Combustion synthesis

CS-SPS:

Combustion synthesis-spark plasma sintering

DC:

Direct current

ECAE:

Equal channel angular extrusion

ECAP:

Equal channel angular pressing

FACS:

Field-activated combustion synthesis

FF-MGE:

Free-fall microgravity environment

HA:

Hydroxyappatite

HERS:

Hot extrusion reaction synthesis

HPSHS:

High pressure self-propagating high temperature synthesis

MA:

Mechanical alloying/activation

MA2P:

Mechanically activated annealing process

MACS:

Microwave-assisted/activated combustion synthesis

MASHS:

Mechanically activated self-propagating high temperature synthesis

MARES:

Mechanically activated reactive extrusion synthesis

MARFOS:

Mechanically activated reactive forging synthesis

MSR:

Mechanically induced self-propagating reaction

ODS:

Oxide dispersion strengthened

PF-MGE:

Plane parabolic flight microgravity environment

SEM:

Scanning electron microscope

SHS:

Self-propagating high temperature synthesis

SLS:

Selective laser sintering

SPS:

Spark plasma sintering

SRS:

Shock-induced reaction synthesis

TACS:

Thermally activated combustion synthesis

References

  1. Booth F (1953) Trans Farad Soc 49:272

    Article  CAS  Google Scholar 

  2. Munir Z (1988) Ceram Bull 67(2):342

    CAS  Google Scholar 

  3. Merzhanov AG, Borovinskaya IP (2008) Int J Self-Prop High-Temp Syn 17(4):242

    Article  CAS  Google Scholar 

  4. Holt JB, Munir ZA (1986) J Mater Sci 21(1):251. doi:10.1007/BF01144729

    Article  CAS  Google Scholar 

  5. Philpot KA, Munir ZA, Holt JB (1987) J Mater Sci 22(1):159. doi:10.1007/BF01160566

    Article  CAS  Google Scholar 

  6. Munir ZA, Holt JB (1987) J Mater Sci 22(2):710. doi:10.1007/BF01160792

    Article  CAS  Google Scholar 

  7. Deevi SC (1991) J Mater Sci 26(12):3343. doi:10.1007/BF01124683

    Article  CAS  Google Scholar 

  8. Zhang S, Munir ZA (1991) J Mater Sci 26(13):3685. doi:10.1007/BF00557164

    Article  CAS  Google Scholar 

  9. Jeng YL, Lavernia EJ (1994) J Mater Sci 29(10):2557. doi:10.1007/BF00356804

    Article  Google Scholar 

  10. Saidi A, Chrysanthou A, Wood JV et al (1994) J Mater Sci 29(19):4993. doi:10.1007/BF01151089

    Article  CAS  Google Scholar 

  11. Fan QC, Chai HF, Jin ZH (1999) J Mater Sci 34(1):115. doi:10.1023/A:1004430028260

    Article  CAS  Google Scholar 

  12. Dumont A-L, Bonnet J-P, Chartier T, Ferreira JMF (2001) J Eur Ceram Soc 21(13):2353

    Article  CAS  Google Scholar 

  13. Groven LJ, Puszynski JA (2008) In: AIChE annual meeting, conference proceedings, November 16, 2008–November 21. American Institute of Chemical Engineers

  14. Augustin CO, Selvan RK (2003) Bull Electrochem 19(7):319

    CAS  Google Scholar 

  15. Xanthopoulou G, Vekinis G (2001) Adv Env Res 5:117

    Article  CAS  Google Scholar 

  16. Subrahmanyam J, Vijayakumar M (1992) J Mater Sci 27:6249. doi:10.1007/BF00576271

    Article  CAS  Google Scholar 

  17. Yi HC, Moore JJ (1990) J Mater Sci 25:1159. doi:10.1007/BF00585421

    CAS  Google Scholar 

  18. Munir Z (1992) Metall Trans A 23:7

    Article  Google Scholar 

  19. Dunand DC (1995) Mater Manuf Process 10(3):373

    Article  CAS  Google Scholar 

  20. Mukasyan AS, Rogachev AS (2008) Prog Energy Combust Sci 34:377

    Article  CAS  Google Scholar 

  21. Reddy BSB, Das K, Das S (2007) J Mater Sci 42:9366. doi:10.1007/s10853-007-1827-z

    Article  CAS  Google Scholar 

  22. Mossino P (2004) Ceram Int 30:311

    Article  CAS  Google Scholar 

  23. Moore JJ, Feng HJ (1995) Prog Mater Sci 39:243

    Article  CAS  Google Scholar 

  24. Moore JJ, Feng HJ (1995) Prog Mater Sci 39:275

    Article  CAS  Google Scholar 

  25. Bowen CR, Derby B (1997) Br Ceram Trans 96(1):25

    CAS  Google Scholar 

  26. Varma A, Rogachev AS, Mukasyan AS, Hwang S (1998) Adv Chem Eng 24:79

    Article  CAS  Google Scholar 

  27. Varma A, Mukasyan AS (1998) Powder Met Technol Appl 7:523

    Google Scholar 

  28. Rogachev AS, Mukasyan AS (2010) Combust Explos Shock Waves 46(3):243

    Article  Google Scholar 

  29. Eakins DE, Thadhani NN (2009) Int Mater Rev 54(4):181

    Article  CAS  Google Scholar 

  30. Vallauri D, At′ıas Adri′an IC, Chrysanthou A (2008) J Eur Ceram Soc 28:1697

    Article  CAS  Google Scholar 

  31. Cincotti AA, Licheri R, Locci AM, Orru R, Cao G (2003) J Chem Technol Biotech 78:122

    Article  CAS  Google Scholar 

  32. Grigorieva TF, Barinova AP, Lyakhov NZ (2003) J Nanopart Res 5:439

    Article  CAS  Google Scholar 

  33. Morsi K (2001) Mater Sci Eng A 299(1–2):1

    Google Scholar 

  34. Barzykin VV (1992) Pure Appl Chem 64(7):909

    Article  CAS  Google Scholar 

  35. Novikov NP, Borovinskaya IP, Merzhanov AG (1975) In: Merzhanov AG (ed) Combustion processes in chemical technology and metallurgy. p 174

  36. Munir ZA, Anselmi-Tamburini U (1989) Mater Sci Rep 3(7–8):277

    Article  CAS  Google Scholar 

  37. Yeh CL, Sung WY (2004) J Alloys Compd 384(1–2):181

    Article  CAS  Google Scholar 

  38. Bernard F, Souha H, Gaffet E (2000) Mater Sci Eng A 284(1):301

    Article  Google Scholar 

  39. Orru R, Cao G, Munir ZA (1999) Met Mater Trans A 30A:1101

    Article  CAS  Google Scholar 

  40. Sohn HY, Wang X (1996) J Mater Sci 31:3281. doi:10.1007/BF00354680

    Article  CAS  Google Scholar 

  41. Hunt EM, Plantier KB, Pantoya ML (2004) Acta Mater 52:3183

    Article  CAS  Google Scholar 

  42. Lee TW, Lee CH (1998) J Mater Sci Lett 17:1367

    Article  CAS  Google Scholar 

  43. Fu EK, Rawlings RD, McShane HB (2001) J Mater Sci 36:5537. doi:10.1023/A:1012540927009

    Article  CAS  Google Scholar 

  44. Gauthier V, Josse C C, Bernard F, Gaffet E, Larpin JP (1999) Mater Sci Eng A265:117

    CAS  Google Scholar 

  45. Locci AM, Licheri R, Orru R, Cincotti A, Cao G, De Wilde J, Lemoisson F, Froyen L, Beloki IA, Sytschev AE, Rogachev AS, Jarvis DJ (2006) ALCHE J 52(11):3744

    Article  CAS  Google Scholar 

  46. Merzhanov AG (2002) Adv Space Res 29(4):481

    Article  Google Scholar 

  47. Odawara O (1997) Ceram Int 3:273

    Article  Google Scholar 

  48. Sytschev AE, Merzhanov AG (2009) Int J Self-Prop High-Temp Syn 18(3):200

    Article  Google Scholar 

  49. Zanotti C, Giuliani P, Maglia F (2006) Intermetallics 14:213

    Article  CAS  Google Scholar 

  50. Kirdyashkin AI, Maksimov Yu M, Kitler VD, Lepakova OK, Burkin VV, Sinyaev SV (1999) Combust Explos Shock Waves 35(3):271

    Article  Google Scholar 

  51. Filimonov IA, Kidin NI (2005) Combust Explos Shock Waves 41(6):639

    Article  Google Scholar 

  52. Munir Z (1992) Met Trans A 23A:7

    Article  CAS  Google Scholar 

  53. Sims DM, Bose A, German RM (1987) In: Freeby CL, Hjort H (ed) Annual powder metallurgy conference proceedings, p 575

  54. Misiolek W, German RM (1991) Mater Sci Eng 144:1

    Article  Google Scholar 

  55. Song I-H, Kim D-W, Yun J-Y, Kim H-D (2005) Key Eng Mater 287:226

    Article  CAS  Google Scholar 

  56. Il’In EN (2010) Refract Indu Ceram 51(1):12

    Article  CAS  Google Scholar 

  57. Hunt EM, Pantoya ML, Jouet RJ (2006) Intermetallics 14:620

    Article  CAS  Google Scholar 

  58. Wu-Laitao Luo Y, Liu W (2007) J Chem Sci 119(3):237

    Article  Google Scholar 

  59. Kim JS, Kang JH, Kang SB, Yoon KS, Kwon YS (2004) Adv Eng Mater 6(6):403

    Article  CAS  Google Scholar 

  60. Kobashi M, Inoguchi N, Kanetake N (2010) Intermetallics 18:1039

    Article  CAS  Google Scholar 

  61. Morsi K, Fujii T, McShane H, McLean M (1999) Scripta Mater 40(3):359

    Article  CAS  Google Scholar 

  62. Dong HX, He YH, Zou J, Xu NP, Huang BY, Liu CT (2010) J Alloys Compd 492:219

    Article  CAS  Google Scholar 

  63. Dong HX, He YH, Jiang Y, Wu L, Zou J, Xu NP, Huang BY, Liu CT (2011) Mater Sci Eng A 28:4849

    Google Scholar 

  64. Guojian J, Qingxue Z, Hanrui Z, Wenlan L, Maozi L (2001) Mater Res Bull 36:617

    Article  CAS  Google Scholar 

  65. Morsi K, Moussa SO, Wall JJ (2005) J Mater Sci 40:1027. doi:10.1007/s10853-005-6526-z

    Article  CAS  Google Scholar 

  66. Morsi K, Wang N (2008) J Alloys Compd 452(2):367

    Article  CAS  Google Scholar 

  67. Biggs DM, Bhattacharya SK (1986) In: Metal-filled polymers. Dekker, New York, p 165

  68. German RM (1985) In: Liquid phase sintering. Plenum, Troy, New York, p 54

  69. Morsi K, Shinde S, Olevsky EA (2006) J Mater Sci 41(17):5699. doi:10.1007/s10853-006-0068-x

    Article  CAS  Google Scholar 

  70. Morsi K, Shinde S, Olevsky EA (2006) Mater Sci Eng A 426(1–2):283

    Google Scholar 

  71. Benjamin JS (1970) Sci Am 234(5):40

  72. Suryanarayana C (2004) Mechanical Alloying and Milling. Marcel Dekker, New York

    Book  Google Scholar 

  73. Maglia F, Anselmi-Tamburini U, Deidda C, Delogu F, Cocco G, Munir Z (2004) J Mater Sci 39:5227. doi:10.1023/B:JMSC.0000039215.28545.2f

    Article  CAS  Google Scholar 

  74. Gras Ch, Vrel D, Gaffet E, Bernard F (2001) J Alloys Compd 314:240

    Article  CAS  Google Scholar 

  75. Charlot F, Gaffet E, Zeghmati B, Bernard F, Niepce JC (1999) Mater Sci Eng A262:279

    CAS  Google Scholar 

  76. Gauthier V, Josse C, Bernard F, Gaffet E, Larpin JP (1999) Mater Sci Eng A 265(1):117

    Article  Google Scholar 

  77. Korchagin MA, Yu V, Filimonov, Smirnov EV, Lyakhov NZ (2010) Combust Explos Shock Waves 46(1):41

    Article  Google Scholar 

  78. Kovalev DYu, Kochetov NA, Ponomarev VI, Mukasyan AS (2010) Int J Self-Prop High-Temp Syn 19(2):120

    Article  CAS  Google Scholar 

  79. Munir ZA (1997) Solid State Ionics 101–103:991

    Article  Google Scholar 

  80. Orru R, Cao G, Munir ZA (1999) Ch Eng Sci 54:3349

    Article  CAS  Google Scholar 

  81. Feng A, Munir ZA (1997) J Am Ceram Soc 80(5):1222

    Article  CAS  Google Scholar 

  82. Cabouro C, Chevalier S, Gaffet E, Vrel D, Boudet N, Bernard F (2007) Act Mater 55:6051

    Article  CAS  Google Scholar 

  83. Chen YY, Yu HB, Zhang DL, Chai LH (2009) Mater Sci Eng A A525:166

    CAS  Google Scholar 

  84. Mei B, Miyamoto Y (2001) Met Mater Trans A 32A:843

    Article  CAS  Google Scholar 

  85. Locci AM, Orrù R, Cao G, Munir ZA (2003) Intermet 11:555

    Article  CAS  Google Scholar 

  86. Frei JM, Anselmi-Tamburini U, Munir ZA (2007) J Appl Phys 101:114914

    Article  CAS  Google Scholar 

  87. Tsuchida T, Yamamoto S (2004) Solid State Ionics 172:215

    Article  CAS  Google Scholar 

  88. Paris S, Gaffet E, Bernard F, Munir ZA (2004) Scripta Mater 50:691

    Article  CAS  Google Scholar 

  89. Heian EM, Khalsa SK, Lee JW, Munir ZA (2004) J Am Ceram Soc 87(5):779

    Article  CAS  Google Scholar 

  90. El Kedim O, Paris S, Phihini C, Bernard F, Gaffet E, Munir ZA (2004) Mater Sci Eng A369:49

    CAS  Google Scholar 

  91. Cabouro G, Chevalier S, Gaffet E, Vrel D, Boudet N, Bernard F (2007) Acta Mater 55:6051

    Article  CAS  Google Scholar 

  92. Numula A, Morsi K, Moon KS, Kassegne SK (2011) In: Proceedings of the 2011 TMS annual meeting, EPD congress. San Diego, CA, p 819

  93. Ahn ZS, Lee HB (1998) J Mater Sci 33:4255. doi:10.1023/A:1004490227256

    Article  CAS  Google Scholar 

  94. Gedevanishvili S, Agrawal D, Roy R (1999) J Mater Sci Lett 18:665

    Article  CAS  Google Scholar 

  95. Jokisaari JR, Bhaduri S, Bhaduri SB (2005) Mater Sci Eng A 394:385

    Article  CAS  Google Scholar 

  96. Boromei I, Casagrande A, Tarterini F, Poli G, Veronesi P, Rosa R (2010) Surf Coat Technol 204:1793

    Article  CAS  Google Scholar 

  97. Atong D, Clark DE (2004) Ceram Inter 30:1909

    Article  CAS  Google Scholar 

  98. Golkar G, Zebarjad SM, Khaki JV (2010) J Alloys Compd 504:566

    Article  CAS  Google Scholar 

  99. Blair RG, Gillan EG, Nguyen NKB (2003) Chem Mater 15:3286

    Article  CAS  Google Scholar 

  100. Bayya SS, Snyder RL (1994) Phys C Supercond 225(1–2):83

    Article  CAS  Google Scholar 

  101. Lorenson CP, Ball MD, Shaw H, Herzig R (1990) Res Soc Proc 189:279

    Article  Google Scholar 

  102. Wang G-X, Dahms M (1992) Scr Metall Mater 26:1469

    Article  CAS  Google Scholar 

  103. Erdeniz D, Ando T (2011) In: Proceedings of the 2011 TMS annual meeting, symposium on processing and properties of powder based materials, p 553

  104. Morsi K, Goyal S (2007) J Alloys Compd 429:L1

    Article  CAS  Google Scholar 

  105. German RM, Bose A (1989) Mater Sci Eng A107:107

    CAS  Google Scholar 

  106. Stoloff NS, Alman DE (1991) Mater Sci Eng A144:51

    CAS  Google Scholar 

  107. Cheng JL, Hng HH, Ng HY, Soon PC, Lee YW (2010) J Phys Chem Sol 71(2):90

    Article  CAS  Google Scholar 

  108. Cheng T, McLean M (1996) Mater Let 29:91

    Article  CAS  Google Scholar 

  109. Cheng T, McLean M (1997) J Mater Sci 32:6255. doi:10.1023/A:1018689111498

    Article  CAS  Google Scholar 

  110. Morsi K, McShane H, McLean M (1997) Scripta Mater 37(11):1839

    Article  CAS  Google Scholar 

  111. Morsi K, McShane HB, McLean M (2000) Mater Sci Eng A 290(1):39

    Article  Google Scholar 

  112. Morsi K, McShane H, McLean M (2000) J Mater Sci Lett 19(4):331. doi:10.1023/A:1006770916085

    Article  CAS  Google Scholar 

  113. Morsi K, McShane H, McLean M (1998) J Mater Sci Lett 17(19):1621

    Article  CAS  Google Scholar 

  114. Morsi K, McShane HB, McLean M (2000) Metall Mater Trans A 31(6):1663

    Article  Google Scholar 

  115. Minay EJ, Sutthispripok W, Rawlings RD, McShane HB (2001) J Mater Sci Lett 20:1979

    Article  CAS  Google Scholar 

  116. Morsi K, Nanayakkara N, Mcshane HB, Mclean M (1999) J Mater Sci 34(12):2801. doi:10.1023/A:1004666830950

    Article  CAS  Google Scholar 

  117. Minay EJ, McShane HB, Rawlings RD (2004) Intermetall 12(1):75

    Article  CAS  Google Scholar 

  118. Witczak Z, Witczak P, Jemielniak R, Mazur A (2004) J Mater Sci 39:551. doi:10.1023/B:JMSC.0000039276.20274.8b

    Article  Google Scholar 

  119. Lee TK, Kim JH, Hwang SK (1997) Met Mater Trans A 28:2723

    Article  Google Scholar 

  120. Kecskes LJ, Gardiner DM, Woodman RH, Barber RE, Hartwig KT (2006) Met Mater Trans 37:449

    Article  Google Scholar 

  121. Horvitz D, Gotman I (2002) Acta Mater 50:1961

    Article  CAS  Google Scholar 

  122. Khoptiar Y, Gotman I (2003) J Eur Ceram Soc 23:47

    Article  CAS  Google Scholar 

  123. Horvitz D, Klinger L, Gotman I (2004) Scripta Mater 50:631

    Article  CAS  Google Scholar 

  124. Neves N, Martins I, Correia JB, Oliveira M, Gaffet E (2008) Mater Sci Eng A 473:336

    Article  CAS  Google Scholar 

  125. Neves N, Martins I, Correia JB, Oliveira M, Gaffet E (2007) Intermetallics 15:1623

    Article  CAS  Google Scholar 

  126. Neves N, Martins I, Correia JB, Oliveira M, Gaffet E (2008) Intermetallics 18:889

    Article  CAS  Google Scholar 

  127. LaSalvia JC, Kim DK, Meyers MA (1996) Mater Sci Eng A 206(1):71

    Article  Google Scholar 

  128. Alman D, Stoloff NS (1991) Int J Powder Metall 27(1):29

    CAS  Google Scholar 

  129. Horvitz D, Gotman I, Gutmanas EY, Claussen N (2002) J Eur Ceram Soc 22:947

    Article  CAS  Google Scholar 

  130. Podlesesov VV, Radugin AV, Stolin AM, Merzhanov AG (1992) J Eng Thermophys (translated from Russian Journal Inzhenero-Fizicheskii Zhurnal) 63(5):1065

    Google Scholar 

  131. Merzhanov AG, Stolin AM, Podlesesov VV (1997) J Eur Ceram Soc 17:447

    Article  CAS  Google Scholar 

  132. Stolin AM (1992) Int J Self-Propag High Temp Synth 1(1):135

    CAS  Google Scholar 

  133. LaSalvia JC, Meyers MA, Kim DK (1994) J Mater Synth Process 2(4):255

    CAS  Google Scholar 

  134. LaSalvia JC, Meyer LM, Meyers MA (1992) J Am Ceram Soc 75(3):592

    Article  CAS  Google Scholar 

  135. LaSalvia JC, Kim DK, Meyers MA (1996) Mater Sci Eng A 206:71

    Article  Google Scholar 

  136. Hoke DA, Do KK, LaSalvia JC, Meyers MA (1996) J Am Ceram Soc 79(1):177

    Article  CAS  Google Scholar 

  137. Morsi K, Wall J, Rodriguez J, Moussa SO (2003) J Mater Eng Perform 12(2):147

    Article  CAS  Google Scholar 

  138. Morsi K K, Rodriguez J (2004) J Mater Sci 39:4849. doi:10.1023/B:JMSC.0000035324.33204.cc

    Article  Google Scholar 

  139. Moussa SO, Morsi K (2007) Mater Sci Eng A 454–455:641

    Google Scholar 

  140. Morsi K, Moussa SO, Wall J (2006) J Mater Sci 41:1265. doi:10.1007/s10853-005-4233-4

    Article  CAS  Google Scholar 

  141. Guo JT, Sheng LY, Xie Y, Zhang ZX, Ovcharenko VE, Ye HQ (2011) Intermetallics 19:137

    Article  CAS  Google Scholar 

  142. Morsi K, El-Desouky A, Johnson B, Mar A, Lanka S (2009) Scripta Mater 61(4):395

    Article  CAS  Google Scholar 

  143. Morsi K, Esawi AMK, Lanka S, Sayed A, Taher M (2010) Compos A 41(2):322

    Article  CAS  Google Scholar 

  144. Morsi K, Esawi AMK, Borah P, Lanka S, Sayed A, Taher M (2010) Mater Sci Eng A 527(21–22):5686

    Google Scholar 

  145. Mehra P, Morsi K (2011) Proceedings of the 2011 TMS annual meeting, EPD congress. San Diego, CA, p 803

  146. Rice RW (1987) Hot rolling of ceramics by the use of self propagating synthesis. US Patent 4,642,218, 10 Feb 1987

  147. Chernyshev VN (2007) Refract Ind Ceram 48(5):359

    Article  CAS  Google Scholar 

  148. Cheng T, Sun J (1994) Scipta Metall Mater 30:247

    Article  CAS  Google Scholar 

  149. Cheng T (1996) J Mater Sci 31:1997. doi:10.1007/BF00356619

    Article  CAS  Google Scholar 

  150. Bhaumik SK, Divakar C, Rangaraj L, Singh AK (1998) Mater Sci Eng A257(2):341

    CAS  Google Scholar 

  151. Dumez M, Marin-Ayral R, Tedenac J (1998) J Alloys Compd 268(1–2):141

    Article  CAS  Google Scholar 

  152. Deevi SC, Sikka VK (1997) Intermetallics 5:17

    Article  CAS  Google Scholar 

  153. Sikka VK, Deevi SC, Vought JD (1995) Adv Mater Process 147(6):29

    CAS  Google Scholar 

  154. Orth JE, Sikka VK (1995) Adv Mater Process 148(5):33

    CAS  Google Scholar 

  155. Sikka VK, Wilkening D, Liebetrau J, Mackey B (1998) Mater Sci Eng A 258(1–2):229

    Google Scholar 

  156. Sikka VK, Santella ML, Angelini P, Mengel J, Petrusha R, Martocci AP, Pankiw RI (2004) Intermetallics 12(7–9):837

    Article  CAS  Google Scholar 

  157. Yang J, La P, Liu W, Hao Y (2004) Mater Sci Eng A 382(1–2):8

    Google Scholar 

  158. Gorshkov VA, Yukhvid VI, Miloserdov PA, Sachkova NV, Kovalev DYu (2011) Int J Self-Prop High-Temp Syn 20(2):100

    Article  CAS  Google Scholar 

  159. Liu G, Li J, Guo S, Ning X, Chen Y (2011) J Alloys Compd 509:1213

    Google Scholar 

  160. Du Z, Fu H, Fu H, Xiao Q (2005) Mater Lett 59(14–15):1853

    Article  CAS  Google Scholar 

  161. Andreev DE, Sanin VN, Sachkova NV, Yukhvid VI (2011) Int J Self-Prop High-Temp Syn 20(1):27

    Article  CAS  Google Scholar 

  162. Sawaoka AB, Akashi T (1987) US Patent 4, p 830

  163. Song I, Wang L, Wixom M (2000) J Mater Sci 35:2611. doi:10.1023/A:1004731532616

    Article  CAS  Google Scholar 

  164. Thadhani NN (1990) In: Schmidt SC, Johnson JN, Davison LW (eds) Shock compression of condensed matter. Elsevier, Amsterdam, p 503

  165. Tomoshige R, Goto T, Matsushita T, Imamura K, Chiba A, Fujita M (1999) J Mater Process Technol 85(1–3):100

    Article  Google Scholar 

  166. Arkens O, Delaey L, De Tavernier J, Huybrechts B, Buekenhout L, Libouton JC (1989) Mater Res Soc Symp 133:493

    Article  Google Scholar 

  167. Gur’ev DL, Gordopolov YA, Zaripov NG, Kabirov RR (2009) Combust Explos Shock Waves 45:104

    Article  Google Scholar 

  168. Song I, Thadhani NN (1992) Met Trans A 23A:41

  169. Mukasyan AS, White JDE (2007) Int J Self-Prop High-Temp Syn 16(3):154

    Article  CAS  Google Scholar 

  170. Kimata T, Uenishi K, Ikenaga A, Kobayashi KF (2004) Sci Technol Adv Mater 5:251

    Article  CAS  Google Scholar 

  171. Pascal C, Marin-Ayral RM, Tedenac JC (2001) J Mater Synth Process 9(6):375

    Article  CAS  Google Scholar 

  172. Pascal C, Martin-Ayral RM, Tedenac JC, Merlet C (2003) J Mater Process Technol 135:91

    Article  CAS  Google Scholar 

  173. Sytschev AE, Vadchenko SG, Kamynina OK, Sachkova NV (2009) Int J Self-Prop High-Temp Syn 18(3):213

    Article  CAS  Google Scholar 

  174. Suman Das (2003) Adv Eng Mater 5(10):701

    Article  CAS  Google Scholar 

  175. Li Y, Hu J, Liu Y, Guo Z, Tosto S (2009) J Mater Process Technol 209:2564

    Article  CAS  Google Scholar 

  176. Zakiev SE, Kholpanov LP, Shishkovsky IV, Parkin IP, Kuznetsov MV, Morozov Y (2006) Appl Phys A 84:123

    Article  CAS  Google Scholar 

  177. Shishkovsky IV, Kuznetsov MV, Morozov YG, Parkin IP (2004) J Mater Chem 14:3444

    Article  CAS  Google Scholar 

  178. Masanta M, Shariff SM, Choudhury AR (2010) Surf Coat Technol 204(16–17):2527

    Article  CAS  Google Scholar 

  179. Gureev DM, Petrov AL, Shishkovsky IV (199) In: Proceedings of SPIE, vol 3688. The International Society of Optical Engineering, p 237

  180. Shishkovsky IV, Scherbakov VI, Morozov YG, Kuznetsov MV, Parkin IP (2008) J Therm Anal Calor 91(2):427

    Article  CAS  Google Scholar 

  181. Shishkovsky I, Morozov Y, Smurov I (2009) Appl Surf Sci 255:5565

    Article  CAS  Google Scholar 

  182. Chen Y, Chung DDL (1996) J Mater Sci 31:2117. doi:10.1007/BF00356634

    Article  CAS  Google Scholar 

  183. Marchi CS, Mortensen A (1998) Met Mater Trans A 29A:2819

    Article  Google Scholar 

  184. Suganuma K (1993) Mater Lett 6:22

    Article  Google Scholar 

  185. Yin X, Travitzky N, Greil P (2007) J Am Ceram Soc 90(7):2128

    Article  CAS  Google Scholar 

  186. Giunchi G, Ripamonti G, Perini E, Cavallin T, Bassani E (2007) IEE Trans Appl Supercond 17(2):2761

    Article  CAS  Google Scholar 

  187. Si-Zhou J, Xiang X, Zhao-Ke C, Peng X, Bai-Yun H (2009) Mater Des 30:3738

    Article  CAS  Google Scholar 

  188. Xia H, Wang J, Jin H, Shi Z, Qiao G (2010) Mater Sci Eng A 528:283

    Article  CAS  Google Scholar 

  189. Kobayashi Y, Kobashi M, Kanetake N (2008) Mater Trans 49(7):1616

    Article  CAS  Google Scholar 

  190. Zhang W, Travitzky N, Greil P (2008) J Am Ceram Soc 91(9):3117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the National Science Foundation (CMMI Division, Materials Processing and Manufacturing program, Grant number 0826532) for their partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Morsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morsi, K. The diversity of combustion synthesis processing: a review. J Mater Sci 47, 68–92 (2012). https://doi.org/10.1007/s10853-011-5926-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5926-5

Keywords

Navigation