Skip to main content
Log in

Strain- and strain-rate-dependent mechanical properties and behaviors of Cu3Sn compound using molecular dynamics simulation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work aims at investigating the mechanical properties and behaviors of orthorhombic Cu3Sn crystals at room temperature through molecular dynamics (MD) simulation. The focuses are placed on the tensile stress–strain behaviors and properties of the Cu3Sn single crystal and also their dependence on applied strain and strain rate. An attempt to characterize the deformation evolution of the Cu3Sn nanostructure during the stress–strain test is also made. In addition, the elastic properties of bulk polycrystalline Cu3Sn are estimated, as a function of strain rate and applied strain, by using the monocrystal results. The effectiveness of the MD model is demonstrated through comparison with the nanoindentation results and also published theoretical and experimental data. The calculated orthotropic elastic and shear moduli and Poisson’s ratio of Cu3Sn single crystal reveal not only high anisotropy, but also the great effects of applied strain and strain rate only as the strain rate exceeds a threshold value of about 0.072% ps−1. Specifically, raising the strain rate increases the orthotropic elastic properties and also the ultimate tensile and shear strengths of the nanocrystal, whereas increasing the applied strain reduces them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Suganuma K (2001) Curr Opin Solid State Mater Sci 5:55

    Article  CAS  Google Scholar 

  2. Fangjie C, Hiroshi N, Tadashi T (2008) J Mater Sci 43:3643. doi:10.1007/s10853-008-2580-7

    Article  Google Scholar 

  3. Lee YG, Duh JG (1998) J Mater Sci 33:5569. doi:10.1023/A:1004499728840

    Article  CAS  Google Scholar 

  4. Yoon JW, Jung SB (2004) J Mater Sci 39:4211. doi:10.1023/B:JMSC.0000033401.38785.73

    Article  CAS  Google Scholar 

  5. Yao D, Shang JK (1995) Metall Mater Trans A 26:2677

    Article  Google Scholar 

  6. Kim JY, Sohn YC, Yu J (2007) J Mater Res 22:770

    Article  CAS  Google Scholar 

  7. Fields RJ, Low SR III, Lucey GK Jr (1992) In: Cieslak MJ, Perepezko JH, Kang S, Glicksman ME (eds) The metal science of joining. TMS, Warrendale, PA, p 165

    Google Scholar 

  8. Albrecht HJ, Juritza A, Muller K, Sterthaus J, Villain J, Vogliano A (2003) IEEE, EPTC:0-7803-8205

  9. Chromik RR, Vinci RP, Allen SL, Notis MR (2003) J Mater Res 18:2251

    Article  CAS  Google Scholar 

  10. Deng X, Chawla N, Chawla KK, Koopman M (2004) Acta Mater 52:4291

    Article  CAS  Google Scholar 

  11. Ghosh G (2004) J Mater Res 19:1439

    Article  CAS  Google Scholar 

  12. Jang GY, Lee JW, Dun JG (2004) J Electron Mater 33:1103

    Article  CAS  Google Scholar 

  13. Xu L, Pang JHL (2006) Thin Solid Films 504:362

    Article  CAS  Google Scholar 

  14. Yang PF, Lai YS, Jian SR, Chen J (2007) IEEE, EPTC:1-4244-1392

  15. Kart SO, Erbay A, Kilic H, Cagin T, Tomak M (2008) J Achiev Mater Manuf Eng 31:41

    Google Scholar 

  16. Lee NTS, Tan VBC, Lim KM (2006) Appl Phys Lett 88:031913

    Article  Google Scholar 

  17. An R, Wang C, Tian T, Wu H (2008) J Electron Mater 37:477

    Article  CAS  Google Scholar 

  18. Chen J, Lai YS, Ren CY, Huang DJ (2008) Appl Phys Lett 92:081901

    Article  Google Scholar 

  19. Pang XY, Wang SQ, Zang L, Liu ZQ, Shang JK (2008) J Alloys Compd 466:517

    Article  CAS  Google Scholar 

  20. Yang Y, Lu H, Yu C, Chen J (2009) ICEPT-HDP:978-1-4244-4659

  21. Chen WH, Cheng HC, Yu CF (2010) IEEE EuroSim 2010:1

    Google Scholar 

  22. Zhou W, Liu L, Wu P (2010) Intermetallics 18:922

    Article  CAS  Google Scholar 

  23. Baskes MI, Nelson JS, Wright AF (1989) Phys Rev B 40:6085

    Article  CAS  Google Scholar 

  24. Baskes MI (1992) Phys Rev B 46:2727

    Article  CAS  Google Scholar 

  25. Baskes MI (1997) Mater Chem Phys 50:152

    Article  CAS  Google Scholar 

  26. Verma JKD, Nag BD (1965) J Phys Soc Jpn 20:635

    Article  CAS  Google Scholar 

  27. Hill R (1952) Proc Phys Soc 65:350

    Google Scholar 

  28. Rose JH, Smith JR, Ferrante J (1984) Phys Rev B 29:2963

    Article  CAS  Google Scholar 

  29. Chromik RR, Cotts ET (1995) In: Im JS, Park B, Greer AL, Stephenson GB (eds) Thermodynamics and kinetics of phase transformations, Pittsburgh, Proc Mater Res Soc, vol 398, p 307

  30. Ravelo RJ, Baskes MI (1997) Phys Rev Lett 79:2482

    Article  CAS  Google Scholar 

  31. Bodig J, Jayne BA (1993) Mechanics of wood and wood composite. Krieger Publishing Company, Malabar, FL

    Google Scholar 

  32. Oliver WC, Pharr GM (1992) J Mater Res 7:1564

    Article  CAS  Google Scholar 

  33. Villar P, Calvet LD (1991) Pearson’s handbook of crystallographic data for intermetallic phase 3, 2nd edn. ASM International, Materials Park, OH, p 3007

    Google Scholar 

  34. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  35. Zhou M (2003) Proc R Soc A 459:2347

    Article  CAS  Google Scholar 

  36. Ikeda H, Qi Y, Cagin T, Samwer K, Johnson WL, Goddard WA III (1999) Phys Rev Lett 82:2900

    Article  CAS  Google Scholar 

  37. Branı′cio PS, Rino JP (2000) Phys Rev B 62:16950

    Article  Google Scholar 

  38. Sankaranarayanan SKRS, Bhethanabotla VR, Joseph B (2007) Phys Rev B 76:134117

    Article  Google Scholar 

  39. Follansbee PS (1986) In: Murr LE, Staudhammer KP, Meyers MA (eds) Metallurgical applications of shock-wave and high-strain-rate phenomena. Marcel Dekker, New York, p 451

    Google Scholar 

  40. Shchukin ED, Yushchenko VS (1981) J Mater Sci 16:313. doi:10.1007/BF00738620

    Article  CAS  Google Scholar 

  41. Park HS, Zimmerman JA (2005) Phys Rev B 72:054106

    Article  Google Scholar 

Download references

Acknowledgements

The work is partially supported by National Science Council, Taiwan, R.O.C., under Grants NSC98-2221-E-007-016-MY3 and NSC99-2221-E-035-021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hwa Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, HC., Yu, CF. & Chen, WH. Strain- and strain-rate-dependent mechanical properties and behaviors of Cu3Sn compound using molecular dynamics simulation. J Mater Sci 47, 3103–3114 (2012). https://doi.org/10.1007/s10853-011-6144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6144-x

Keywords

Navigation