Skip to main content
Log in

Inclusion (particle) removal by interception and gravity in ceramic foam filters

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An analytical model regarding the ceramic foam filter (CFF) as a network of branches (cylinders) has been developed to describe inclusion removal in CFFs used for aluminium filtration. The model based on measurements of filters with 30 pores per inch, should also predict behaviour of commercial filters with finer pores. Filtration efficiency is a function of particle size, metal velocity, particle settling velocity, and filter properties—the branch diameter, filter thickness, porosity, and specific surface area. The model takes into account interception with cylinders and settling on branch surfaces. The velocities are calculated from the Forchheimer and Ergun’s equation. There is good agreement between the model and plant experiments. Removal by interception increases strongly with decreasing cylinder diameter. There is indication that Al2O3 and SiC filters differ in their capture of inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The confidence lines give the range where the true value for a given measurement is likely to be given that the fitted curve is of correct form. Approximately 68 % of values drawn from a normal (or Gaussian) distribution are within one standard deviation away from the average.

Abbreviations

a :

Factor in Eq. (41)

A :

The cross-sectional area of the control volume in direction z (m2)

A :

Factor in Eq. (18)

a s :

The specific surface area: the surface area per unit volume of melt (m−1)

A x :

The filter cross-sectional area (m2)

b :

Ratio between projected area in the flow direction and the surface area

b :

Factor in Eq. (41)

C :

The drag coefficient in Eq. (28)

c or c(z):

The particle concentration (at z direction) (#/m3)

c in :

The inclusion concentrations at the inlet (#/m3)

c out :

The inclusion concentrations at the outlet (#/m3)

d pore :

The filter pore diameter (m)

d s :

The strut (cylinder) diameter in the models (m)

E :

The filtration efficiency

f :

The effective fraction of the surface in a gravity direction

F d :

The drag force on the particle (N)

F g :

The gravity force acting on the particle (N)

f 1 , f 3 , f 5 , f 7 …:

The function of λ or y, see Appendix A in [1]

g :

The acceleration due to gravity, 9.18 (m/s2)

k 1 :

Darcian permeability (m2)

k 2 :

Non-Darcian permeability (m)

L :

The filter thickness (m)

L c :

The length of the cylinder (m)

n :

Factor in Eq. (18)

ΔP :

The pressure drop across the filter (Pa)

q :

The adhesion efficiency

Q :

The volumetric flow rate (m3/s)

Q m :

The mass flow rate (ton/h)

R :

The cylinder radius (m)

R 2 :

The correlation coefficient of the curve fitting

R′:

The cylinder radius considering the coating, R = R′ + 2.5 × 10−3 m in Palmer’s case [2] (m)

Re :

Reynolds number

Re c :

Reynolds number for a cylinder

Re c′:

The Reynolds number for a cylinder considering the coating

Re p :

The Reynolds number of a particle

Re pore :

Reynolds number of a pore

R p :

The particle/inclusion radius (m)

U s :

The settling velocity of a particle relative to the metal (m/s)

U 1,U 3, U 5, U 7…:

The fluid flux coefficients, depend only on the shape of the body

U :

The approach or superficial velocity of the fluid (m/s)

x :

The distance along cylinder measured from stagnation point and x = Rθ (m)

y :

The normal distance from the cylinder surface (m)

z :

The starting point of a control volume (m)

Δz :

The length of the control volume (m)

β:

The angle made by the cylinder with the normal to the flow (°)

γ:

The angle between the normal to the surface and gravity (°)

ε:

Filter porosity (%)

η:

The collision efficiency defined as the number of inclusions that collide with the collector divided by the number moving towards the collector (%)

ηi :

The collision efficiency due to interception

ηi-avg :

Average collision efficiency due to interception

ηg :

The collision efficiency due to gravity

θ:

The polar coordinate (°)

θ:

The collection angle (°)

θc :

The maximum collection angle (°)

μ:

The fluid dynamic viscosity [kg/(m s)]

λ:

The dimensionless distance of a particle from the cylinder surface

λc :

The dimensionless distance of a particle from the cylinder surface when the particle collides with the cylinder: \( R_{\text{p}} /R\sqrt {\text{Re}_{\text{c}} } \)

ν:

The kinematic viscosity (m2/s)

ρ:

The density (kg/m3)

ρl :

The density of the liquid metal (kg/m3)

ρp :

The density of the particle (kg/m3)

Δρ:

Density difference between inclusion and melt (kg/m3)

ψ:

The fluid flux

ξ:

The dimensionless surface vorticity at the collection angle

References

  1. Bao S (2011) Filtration of aluminium-experiments, wetting and modelling. PhD Thesis, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim

  2. Palmer MR, Nepf HM, Pettersson TJR, Ackerman JD (2004) Am Soc Limnol Oceanogr 49(1):76

    Article  Google Scholar 

  3. Yuan Q, Liu X, Zhong Y, Ren Z (2003) Yunnan Metall 32(3):106

    Google Scholar 

  4. Gauckler LJ, Waeber MM (1985) Light Met 1261

  5. Acosta GF, Castillejos A, Almanza RJ, Flores VA (1995) Metall Mater Trans B 26(1):159

    Article  Google Scholar 

  6. Tien C, Ramarao B (2007) Granular filtration of aerosols and hydrosols. Elsevier Science Ltd, Oxford

    Google Scholar 

  7. Binner J, Sambrook R (2003) http://wwwazomcom/Detailsasp?ArticleID=1869. Accessed 28 June 2012

  8. Harvey M, Bourget E, Ingram R (1995) Limnol Oceanogr 40(1):94

    Article  Google Scholar 

  9. Ciftja A (2009) Solar silicon refining: inclusions, settling, filtration, wetting. Norges Teknisk-Naturvitenskapelige Universitet, Trondheim

    Google Scholar 

  10. Engh TA (1992) Principles of Metal Refining. Oxford University Press, Oxford

    Google Scholar 

  11. Innocentini MDM, Salvini VR, Macedo A, Pandolfelli VC (1999) Mater Res 2(4):283

    Article  CAS  Google Scholar 

  12. Richardson J, Peng Y, Remue D (2000) Appl Catal A 204(1):19

    Article  CAS  Google Scholar 

  13. Moreira E, Coury J (2004) Braz J Chem Eng 21(1):23

    Article  CAS  Google Scholar 

  14. Moreira E, Innocentini M, Coury J (2004) J Eur Ceram Soc 24(10–11):3209

    Article  CAS  Google Scholar 

  15. Lu T, Stone H, Ashby M (1998) Acta Mater 46(10):3619

    Article  CAS  Google Scholar 

  16. Giani L, Groppi G, Tronconi E (2005) Ind Eng Chem Res 44(14):4993

    Article  CAS  Google Scholar 

  17. Lacroix M, Nguyen P, Schweich D, Pham Huu C, Savin-Poncet S, Edouard D (2007) Chem Eng Sci 62(12):3259

    Article  CAS  Google Scholar 

  18. Fourie JG, Du Plessis JP (2002) Chem Eng Sci 57(14):2781

    Article  CAS  Google Scholar 

  19. Buciuman FC, Kraushaar-Czarnetzki B (2003) Ind Eng Chem Res 42(9):1863

    Article  CAS  Google Scholar 

  20. Schlichting H (1979) Boundary-layer theory, 7th edn. McGraw Hill, New York

    Google Scholar 

  21. Origin User Guide. OriginLab Corporation, One Roundhouse Plaza, Northampton, MA 01060, USA

  22. Schlichting H (1960) Boundary-layer theory. McGraw-Hill, New York

    Google Scholar 

  23. Weber M, Paddock D (1983) J Colloid Interface Sci 94(2):328

    Article  CAS  Google Scholar 

  24. Espinosa A, Ghisalberti M, Ivey G, Jones N (2010) In: Paper presented at the 17th Australasian fluid mechanics conference, Auckland, New Zealand

  25. Landau LD, Lifshitz EM (1959) Translated from the Russian by J. B. Sykes and W. H. Reid, vol 6. Pergamon Press, London

  26. Acosta FAG, Castillejos AHE (2000) Metall Mater Trans B 31B:491

    Article  Google Scholar 

  27. Tian C, Guthrie RIL (1995) Metall Mater Trans B 26(3):537

    Article  Google Scholar 

  28. Bao S, Kvithyld A, Gaal S, Engh TA, Tangstad M (2009) Light Met 767

  29. Bao S, Syvertsen M, Rasch B, Kvithyld A, Engh TA, Tangstad M (2012) J Mater Sci

  30. Lide DR (ed) (2004) CRC handbook of chemistry and physics, 85th edn. CRC Press, Boca Raton

    Google Scholar 

  31. Luk S, Mutharasan R, Apelian D (1987) Ind Eng Chem Res 26(8):1609

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was carried out as part of the Norwegian Research Council (NRC)-funded BIP Project (No. 179947/I40) Remelting and Inclusion Refining of Aluminium (RIRA). It includes the following partners: Hydro Aluminium AS, SAPA Heat Transfer AB, NTNU and SINTEF. Fundings by the industrial partners and NRC are acknowledged gratefully. Thanks are also owed to Dr. Bjørn Rasch from Hydro Sunndalsøra and Arne Nordmark from SINTEF, for support and help in arranging the industrial experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarina Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, S., Engh, T.A., Syvertsen, M. et al. Inclusion (particle) removal by interception and gravity in ceramic foam filters. J Mater Sci 47, 7986–7998 (2012). https://doi.org/10.1007/s10853-012-6688-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6688-4

Keywords

Navigation