Skip to main content
Log in

ZrB2–SiC/Ti6Al4V joints: wettability studies using Ag- and Cu-based braze alloys

  • HTC 2012
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, a study is presented on the wettability of ZrB2 ceramics (pure ZrB2 and ZrB2–SiC composite) and of the Ti6Al4V alloy by pure Cu and Ag and their alloys with Ti to be used in subsequent brazing processes. Wettability tests aimed at elucidating the interfacial interactions and the role of active metal additions (i.e. Ti) in the brazing procedure, performed in a temperature range between 950 and 1150 °C, showed that Cu wets pure ZrB2 quite well (contact angle θ = 70°), while Ag does not. The composite was wetted in a similar way by Cu, while for Ag a θ = 97° was found. The addition of Ti improved the wetting (θ between ~0° and 20°) and segregation at the metal–ceramic interface occurred. As expected, both Cu(Ti) and Ag(Ti) wetted the Ti6Al4V alloy very well. In particular, it was shown that Cu can already produce a liquid phase at 950 °C with partial dissolution of the solid phase. These results are discussed in terms of interfacial reactions and taking into account the sintering aids used for the ceramic body. This study is aimed at defining a brazing process that leads to reliable metal–ceramic joints as a result of chemical interactions of the liquid phase with and diffusion into the adjoining solids. Exploratory joining tests were performed that showed, by means of shear tests coupled with microstructural and microchemical description of the interfaces, the possibility to design sound ZrB2–SiC/Ti6Al4V joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA (2007) J Am Ceram Soc 90:1347

    Article  CAS  Google Scholar 

  2. Monteverde F, Bellosi A, Scatteia L (2008) Mater Sci Eng A 485(1–2):415

    Google Scholar 

  3. Parthasarathy TA, Rapp RA, Opeka M, Kerans RJ (2007) Acta Mater 55:5999

    Article  CAS  Google Scholar 

  4. Karlsdottir SN, Halloran JW (2009) J Am Ceram Soc 92:481

    Article  CAS  Google Scholar 

  5. Fahrenholtz WG (2007) J Am Ceram Soc 90:143

    Article  CAS  Google Scholar 

  6. Silvestroni L, Sciti D (2011) J Am Ceram Soc 94:2796

    Article  CAS  Google Scholar 

  7. Tripp WC, Davis HH, Graham HC (1973) Ceram Bull 52:612

    CAS  Google Scholar 

  8. Samsonov GV, Panasyuk AD, Borovikova MS (1973) Poroshkovaya Metallurgiya 5:61

    Google Scholar 

  9. Samsonov GV, Panasyuk AD, Borovikova MS (1973) Poroshkovaya Metallurgiya 6:51

    Google Scholar 

  10. Tumanov VI, Gorbunov AE, Kondratenko GM (1970) Russ J Phys Chem 44:304

    Google Scholar 

  11. Muolo ML, Ferrera E, Novakovic R, Passerone A (2003) Scripta Mater 48:191

    Article  CAS  Google Scholar 

  12. Muolo ML, Ferrera E, Passerone A (2005) J Mater Sci 40:2295. doi:10.1007/s10853-005-1948-1

    Article  CAS  Google Scholar 

  13. Passerone A, Muolo ML, Passerone D (2006) J Mater Sci 41:5088. doi:10.1007/s10853-006-0442-8

    Article  CAS  Google Scholar 

  14. Voytovych R, Koltsov A, Hodaj F, Eustathopoulos N (2007) Acta Mater 55:6316

    Article  CAS  Google Scholar 

  15. Passerone A, Muolo ML, Valenza F, Monteverde F, Sobczak N (2009) Acta Mater 57:356

    Article  CAS  Google Scholar 

  16. Passerone A, Valenza F, Muolo ML (2012) J Mater Sci doi:10.1007/s10853-012-6621-x

  17. Naidich JV (1981) In: Progress in surface and membrane science, vol 14. Academic Press, New York

  18. Passerone A, Muolo ML, Valenza F, Kaufmann L (2010) CALPHAD 34:6

    Article  CAS  Google Scholar 

  19. Cacciamani G, Riani P, Valenza F (2012) CALPHAD 35(4):601

    Article  Google Scholar 

  20. Valenza F, Muolo ML, Passerone A, Cacciamani G, Artini C (2012) J Mater Eng Perform 21(5):660

    Article  CAS  Google Scholar 

  21. Singh M, Asthana R (2010) J Mater Sci 45:4308. doi:10.1007/s10853-010-4510-8

    Article  CAS  Google Scholar 

  22. Asthana R, Singh W (2009) Scripta Mater 61:257

    Article  CAS  Google Scholar 

  23. Singh M, Asthana R (2007) Mater Sci Eng A 460:153

    Article  Google Scholar 

  24. Singh M, Asthana R (2009) Int J Appl Ceram Technol 6:113

    Article  CAS  Google Scholar 

  25. Esposito L, Bellosi A (2005) J Mater Sci 40:4445. doi:10.1007/s10853-005-2813-y

    Article  CAS  Google Scholar 

  26. Pinc WR, Di Prima M, Walker LS, Wing ZN, Corral EL (2011) J Am Ceram Soc 94(11):3825

    Article  CAS  Google Scholar 

  27. Yuan B, Zhang GJ (2011) Scripta Mater 64:17

    Article  CAS  Google Scholar 

  28. Yang W, Lin T, He P, Huang Y, Feng J (2012) J Alloys Compd 527:117

    Article  CAS  Google Scholar 

  29. Murray JL, Bhansali KJ (1983) J Phase Eq 4(2):178

    Google Scholar 

  30. Okamoto H (2002) J Phase Eq 23(6):549

    Article  CAS  Google Scholar 

  31. Muolo ML, Ferrera E, Morbelli L, Zanotti C, Passerone A (2003) Joining of zirconium boride based refractory ceramics to Ti6Al4V In: Fletcher K (ed) Proceedings of the 9th International symposium on materials in a space environment, June 2003, Noordwijk. The Netherlands, ESA SP-540, ESA Publications

  32. Cook GO III, Sorensen CD (2011) J Mater Sci 46:5305. doi:10.1007/s10853-011-5561-1

    Article  CAS  Google Scholar 

  33. Monteverde F, Guicciardi S, Bellosi A (2003) Mater Sci Eng A 346:310

    Article  Google Scholar 

  34. Eriksson M, Salamon D, Nygren M, Shen Z (2008) Mater Sci Eng A 475:101

    Article  Google Scholar 

  35. Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon materials series edn. Pergamon, Oxford

    Google Scholar 

  36. Valenza F, Muolo ML, Passerone A (2010) J Mater Sci 45(8):2071. doi:10.1007/s10853-009-3801-4

    Article  CAS  Google Scholar 

  37. Eustathopoulos N, Sobczak N, Passerone A, Nogi K (2005) J Mater Sci 40(9–10):2271. doi:10.1007/s10853-005-1945-4

    Article  CAS  Google Scholar 

  38. Nikolopoulos P, Agathopoulos S, Angelopoulos N, Naoumidis A (1992) J Mater Sci 27:139. doi:10.1007/BF02403656

    Article  CAS  Google Scholar 

  39. Adachi M, Schick M, Brillo J, Egry I (2010) J Mater Sci 45(8):2002. doi:10.1007/s10853-009-4149-5

    Article  CAS  Google Scholar 

  40. Passerone A, Muolo ML, Valenza F, Novakovic R (2009) Surf Sci 603(17):2725

    Article  CAS  Google Scholar 

  41. Aizenshtein M, Froumin N, Frage N (2012) J Mater Eng Perform 21:655

    Article  CAS  Google Scholar 

  42. Hildebrand DL, Hall WF, Potter ND (1963) J Chem Phys 39(2):296

    Article  Google Scholar 

  43. Piper J (1966) J Phys Chem Solids 27:1907

    Article  CAS  Google Scholar 

  44. Zhang L, Pejakovic DA, Marshall J (2011) J Am Ceram Soc 94:2652. doi:10.1111/j.1551.2916.2011.04411.x

    Article  Google Scholar 

  45. Dezellus O, Eustathopoulos N (2010) J Mater Sci 45:4256. doi:10.1007/s10853-009-4128-x

    Article  CAS  Google Scholar 

  46. Passerone A, Muolo ML, Novakovic R, Passerone D (2007) J Eur Ceram Soc 27:3277

    Article  CAS  Google Scholar 

  47. Opeka MM, Talmy IG, Wuchina EJ, Zaykoski JA, Causey SJ (1999) J Eur Ceram Soc 19:2405

    Article  CAS  Google Scholar 

  48. Rongti L, Wei P, Jian C, Jie L (2002) Mater Sci Eng A 335(1–2):21

    Google Scholar 

  49. Shiue RK, Wu SK, Chen SY (2003) Acta Mater 51:1991

    Article  CAS  Google Scholar 

  50. Salpadoru NH, Flower HM (1995) Metall Mater Trans A 26(2):243

    Article  Google Scholar 

Download references

Acknowledgements

The ZrB2–SiC ceramics were produced by CNR-ISTEC (Faenza, Italy) which is gratefully acknowledged. The authors wish to thank Mr. Paolo Cirillo (University of Genoa, DICAT) for help in mechanical tests and Mr. Francesco Mocellin for technical support. This work is part of the Project ‘JoinHT’ funded by the ‘CARIPLO Funding Scheme, 2010’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Valenza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valenza, F., Artini, C., Passerone, A. et al. ZrB2–SiC/Ti6Al4V joints: wettability studies using Ag- and Cu-based braze alloys. J Mater Sci 47, 8439–8449 (2012). https://doi.org/10.1007/s10853-012-6790-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6790-7

Keywords

Navigation