Skip to main content
Log in

Mechanical, electrical and electro-mechanical properties of thermoplastic elastomer styrene–butadiene–styrene/multiwall carbon nanotubes composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Composites of styrene–butadiene–styrene (SBS) block copolymer with multiwall carbon nanotubes were processed by solution casting to investigate the influence of filler content, the different ratios of styrene/butadiene in the copolymer and the architecture of the SBS matrix on the electrical, mechanical and electro-mechanical properties of the composites. It was found that filler content and elastomer matrix architecture influence the percolation threshold and consequently the overall composite electrical conductivity. The mechanical properties are mainly affected by the styrene and filler content. Hopping between nearest fillers is proposed as the main mechanism for the composite conduction. The variation of the electrical resistivity is linear with the deformation. This fact, together with the gauge factor values in the range of 2–18, results in appropriate composites to be used as (large) deformation sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lorenz H, Fritzsche J, Das A, Stöckelhuber KW, Jurk R, Heinrich G et al (2009) Compos Sci Technol 69(13):2135

    Article  CAS  Google Scholar 

  2. Du J-H, Bai J, Cheng H-M (2007) Polym Lett 1(5):253

    Article  CAS  Google Scholar 

  3. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Composites A 41(10):1345

    Article  Google Scholar 

  4. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Prog Polym Sci 35(7):837

    Article  CAS  Google Scholar 

  5. De Falco A, Goyanes S, Rubiolo GH, Mondragon I, Marzocca A (2007) Appl Surf Sci 254(1):262

    Article  Google Scholar 

  6. Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RA (2005) Polymer 46(12):4405

    Article  CAS  Google Scholar 

  7. Li C, Thostenson ET, Chou T-W (2008) Compos Sci Technol 68(6):1227

    Article  CAS  Google Scholar 

  8. Tsuchiya K, Sakai A, Nagaoka T, Uchida K, Furukawa T, Yajima H (2011) Compos Sci Technol 71(8):1098

    Article  CAS  Google Scholar 

  9. Pedroni LG, Soto-Oviedo MA, Rosolen JM, Felisberti MI, Nogueira AF (2009) J Appl Polym Sci 112(6):3241

    Article  CAS  Google Scholar 

  10. Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Marêché JF (1996) Phys Rev B 53(10):6209

    Article  CAS  Google Scholar 

  11. Kirkpatrick S (1973) Rev Mod Phys 45(4):574

    Article  Google Scholar 

  12. Balberg I, Anderson CH, Alexander S, Wagner N (1984) Phys Rev B 30(7):3933

    Article  Google Scholar 

  13. Silva J, Ribeiro S, Lanceros-Mendez S, Simões R (2011) Compos Sci Technol 71(5):643

    Article  CAS  Google Scholar 

  14. Wang P, Geng S, Ding T (2010) Compos Sci Technol 70(10):1571

    Article  CAS  Google Scholar 

  15. Taya M, Kim WJ, Ono K (1998) Mech Mater 28(1–4):53

    Article  Google Scholar 

  16. Paleo AJ, Hattum FWJ, Pereira J, Rocha JG, Silva J, Sencadas V et al (2010) Mater Struct 19(6):065013

    Google Scholar 

  17. Kang I, Heung YY, Kim JH, Lee JW, Gollapudi R, Subramaniam S et al (2006) Composites B 37(6):382

    Article  Google Scholar 

  18. Thostenson ET, Chou TW (2006) Adv Mater 18(21):2837

    Article  CAS  Google Scholar 

  19. Oliva-Avilés AI, Avilés F, Sosa V (2011) Carbon 49(9):2989

    Article  Google Scholar 

  20. Huy TA, Adhikari R, Michler GH (2003) Polymer 44(4):1247

    Article  CAS  Google Scholar 

  21. Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  22. Kyrylyuk AV, van der Schoot P (2008) Proc Natl Acad Sci 105(24):8221

    Article  CAS  Google Scholar 

  23. Sreenivasan S, Kalisky T, Braunstein LA, Buldyrev SV, Havlin S, Stanley HE (2004) Phys Rev E 70(4):046133

    Article  Google Scholar 

  24. Ambegaokar V, Halperin BI, Langer JS (1971) Phys Rev B 4(8):2612

    Article  Google Scholar 

  25. Miller A, Abrahams E (1960) Phys Rev 120(3):745

    Article  CAS  Google Scholar 

  26. Silva J, Simoes R, Lanceros-Mendez S, Vaia R (2011) Europhys Lett 93(3):37005

    Article  Google Scholar 

  27. Connor MT, Roy S, Ezquerra TA, Baltá Calleja FJ (1998) Phys Rev B 57(4):2286

    Article  CAS  Google Scholar 

  28. Grimaldi C, Ryser P, Strassler S (2000) J Appl Phys 88(7):4164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by FEDER funds through the ‘Programa Operacional Factores de Competitividade—COMPETE’ and by national funds by FCT—Fundação para a Ciência e a Tecnologia, through project references PTDC/CTM/69316/2006, PTDC/CTM/73465/2006, PTDC/CTM-NAN/112574/2009, and NANO/NMed-SD/0156/2007. PC, JS and VS also thank FCT for the SFRH/BD/64267/2009, SFRH/BD/60623/2009 and SFRH/BPD/63148/2009 Grants, respectively. The authors also thank support from the COST Action MP1003 ‘European Scientific Network for Artificial Muscles’ and the COST action MP0902 ‘Composites of Inorganic Nanotubes and Polymers (COINAPO)’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lanceros-Méndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, P., Silva, J., Sencadas, V. et al. Mechanical, electrical and electro-mechanical properties of thermoplastic elastomer styrene–butadiene–styrene/multiwall carbon nanotubes composites. J Mater Sci 48, 1172–1179 (2013). https://doi.org/10.1007/s10853-012-6855-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6855-7

Keywords

Navigation