Skip to main content
Log in

TEM investigations of the oxide layers formed on a 316L alloy in simulated PWR environment

  • Energy Materials & Thermoelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Atomic scale observations of the oxide formed on stainless steels, under simulated nuclear reactor conditions, are performed to estimate the oxide layer contribution on stress corrosion cracking (SCC) mechanisms. A duplex oxide composed of a chromium enriched inner layer (Fe1.5Cr1.5O4) and an outer layer composed of magnetite crystallites (Fe3O4) is found. The oxide layer structure evolves from amorphous, for oxidation times of 1 min, to nano-crystalline at 2 min and mono-crystalline after 5 h. IFFT images, calculated from Cs-corrected HRTEM images recorded on grains oriented in the 〈111〉 direction, highlight a double network of dislocations with ½ 〈10-1〉 and ½ 〈−110〉 Burgers vectors. This network leads to the decrease in non-relaxed deformation and favors an epitaxial growth between steel and oxide. Both crystal structure transformations and epitaxial relations between metal and oxide have provided relevant information which contributed to progress on SCC modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Not reported in this paper.

  2. FEI Helios Nanolab 600 in EDF R&D.

  3. FEI Tecnai 20F attached to a GIF 2000 available in EDF R&D.

  4. FEI Titan 80–300 kV Cs objective lens corrector available in CIM-PACA platform.

  5. FEI Titan 80–300 kV Cs probe lens corrector and monochromator attached to a HR-Tridiem GIF available in EDF R&D.

  6. ASTAR software principle is not developed in this paper. More details are given in [30, 31].

  7. Not reported in this paper.

References

  1. Moore JB Jr, Jones RL (1968) J Electrochem Soc 115(6):576

    Article  CAS  Google Scholar 

  2. Boursier JM, Desjardins D, Vaillant F (1995) Corros Sci 495:37

    Google Scholar 

  3. Petrequin P (1997) Effect of irradiation on water reactor internals. ASME report n°11. COSU CT 94-074, EUR 17694 EN

  4. Pathania R (2002) Quantification of yield strength effects on IGSCC in austenitic stainless steels and its implication to IASCC. EPRI report 1007380

  5. Couvant T, Vaillant F, Boursier JM, Delafosse D (2004) In Eurocorr 2004, Nice

  6. Huang YZ, Titchmarsh JM (2006) Acta Mater 54:635

    Article  CAS  Google Scholar 

  7. Lozano-Perez S, Schröder M, Yamada T, Terachi T, English CA, Grovenor CRM (2008) Appl Surf Sci 1541:255

    Google Scholar 

  8. Lozano-Perez S, Yamada T, Terachi T, Schröder M, English CA, Smith GDW, Grovenor CRM, Eyre BL (2009) Acta Mater 2361:57

    Google Scholar 

  9. Lozano-Perez S, Saxey DW, Yamada T, Terachi T (2010) Scripta Mater 62:855

    Article  CAS  Google Scholar 

  10. Lozano-Perez S, Rodrigo P, Gontard LC (2011) J Nucl Mater 408:289

    Article  CAS  Google Scholar 

  11. Potter EC, Mann GMW (1961) Oxidation of mild steel in high-temperature aqueous systems. Proceeding of the 1st International Congress of metallic corrosion, Butterworth, London, pp 417–426

  12. Robertson J (1991) Corros Sci 32:443

    Article  CAS  Google Scholar 

  13. Ziemniak SE, Castelli RA (2003) J Phys Chem Solids 64:2081

    Article  CAS  Google Scholar 

  14. Terachi T, Fujii K, Arioka K (2005) J Nucl Sci Technol 42:225

    Article  CAS  Google Scholar 

  15. Ensling J, Fleisch J, Grimm R, Gruberand J, Gutlich P (1978) Corros Sci 18:798

    Article  Google Scholar 

  16. Leygraf C, Hultquist GH (1982) Corros Sci 22:331

    Article  Google Scholar 

  17. Greyling CJ, Roux JP (1984) Corros Sci 24:675

    Article  CAS  Google Scholar 

  18. Tapping RL, Davidson D, McAlpine E, Lister DH (1986) Corros Sci 26:563

    Article  CAS  Google Scholar 

  19. Howes VR (1967) Corros Sci 735:7

    Google Scholar 

  20. Bignold GJ, Garnsey R, Mann GMW (1972) Corros Sci 12:325

    Article  CAS  Google Scholar 

  21. Langevoort JC, Sutherland I, Hanekamp LJ, Gellings PJ (1987) Appl Surf Sci 28:167

    Article  CAS  Google Scholar 

  22. Lister DH, Davidson RD, McAlpine E (1987) Corros Sci 27:113

    Article  CAS  Google Scholar 

  23. Szklarska-Smialowska Z, Chou K-C, Xia Z (1991) Corros Sci 32:609

    Article  CAS  Google Scholar 

  24. Stellwag B (1998) Corros Sci 40:337

    Article  CAS  Google Scholar 

  25. Da Cunha Belo M, Walls M, Hakiki NE, Corset J, Picquenard E, Sagonand G, Noel D (1998) Corros Sci 40:447

    Article  Google Scholar 

  26. Machet A (2004) Etude des premiers stades d’oxydation d’alliages inoxydables dans l’eau à haute température. Université Pierre et Marie Curie Paris VI

  27. Machet A, Galtayries A, Zanna S, Klein SL, Maurice V, Jolivet P, Foucault M, Combrade P, Scottand P, Marcus P (2004) Electrochimica Acta 49:3957

    Article  CAS  Google Scholar 

  28. Kerrec O, Lincot D, Gardey S (1996) In: Eurocorr'96, Nice

  29. Gardey S (1998) Etude de la corrosion généralisée des alliages 600, 690 et 800 en milieu primaire—Contribution à la compréhension des mécanismes. Université Pierre et Marie Curie, Paris

    Google Scholar 

  30. Rauch EF, Veron M (2005) J Mater Sci Eng Tech 36:552

    CAS  Google Scholar 

  31. Moeck P, Rouvimov S, Rauch EF, Veron M, Kirmse H, Hausler I, Neumman W, Bultreys D, Maniette Y, Nicolopoulos S (2011) Cryst Res Technol 589:46

    Google Scholar 

  32. Trampert A, Earnst F, Flynn CP, Fischmeister HF, Rhüle M (1992) Acta Metall Mater 40:227

    Article  Google Scholar 

  33. Cazottes S, Zhang ZL, Daniel R, Chawla JS, Gall D, Dehm G (2010) Thin Solid Films 519:1662

    Article  CAS  Google Scholar 

  34. Ernst F (1994) Mater Sci Eng, p 174

  35. Huin N (2012) End planned. Université de Poitiers, Poitiers

    Google Scholar 

Download references

Acknowledgements

The authors would like acknowledge Michael Jublot and Martiane Cabié from CP2M laboratory in Marseille for the technique of backside milling. Thanks to Muriel Véron who introduced us in the use of the Astar software. Thanks also to Stéphane Coindeau, Rachel Martin and Alexandre Crisci for XRD, SEM, and Raman experiments, respectively. We are also grateful to Patricia Donnadieu for her help in the HRTEM images interpretation and Bruno Gilles for the investigation of the Burgers vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cheynet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soulas, R., Cheynet, M., Rauch, E. et al. TEM investigations of the oxide layers formed on a 316L alloy in simulated PWR environment. J Mater Sci 48, 2861–2871 (2013). https://doi.org/10.1007/s10853-012-6975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6975-0

Keywords

Navigation