Skip to main content
Log in

3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

X-ray microtomography and Digital Volume Correlation are used to characterize the compressive behavior of fibrous materials, composed of wood fibers and thermoplastic fibers. 9-mm height and 9-mm diameter specimens are compressed uniaxially up to 30 % compression rate with an increment of 5 %. The evolution of microstructure is followed at different compression states by X-ray microtomography at a spatial resolution of 6 μm per voxel. Digital Volume Correlation is applied on microtomographic images to obtain the 3D strain field at each loaded state. The studied material shows a heterogeneous local strain field which relates not only to the complex microstructure but also to its modifications under solicitations. Microstructural parameters such as distributions of local porosities and fiber diameters are computed at different states by mathematical morphology. Relations between morphological parameters and 3D strain field are established. In a first approach, we show that the local mechanical behavior is controlled by distributions of local porosities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Delisée C, Faessel M, Gobbé C, Normand X, Castets L, Neel M (2001) Final report. ADEME Convention No 99-01-060

  2. Faessel M, Delisée C, Bos F, Castéra P (2005) Compos Sci Technol 65(13):1931

    Article  CAS  Google Scholar 

  3. Lux J, Ahmadi A, Gobbé C, Delisée C (2006) Int Heat Mass Transf 49(11–12):1958

    Article  CAS  Google Scholar 

  4. Lux J (2005) PhD thesis, no 3034, Université Bordeaux 1, Bordeaux, France

  5. Peyrega C, Jeulin D (2010) In: Proceedings of the COMSOL conference, Paris

  6. Peyrega C, Jeulin D, Delisée C (2011) Adv Eng Mater 13(3):156

    Article  CAS  Google Scholar 

  7. Viguié J, Dumont P, Mauret E, Rolland Du Roscoat S, Vacher P, Desloges I, Bloch J-F (2011) J Mater Sci 46(14):4756. doi:10.1007/s10853-011-5386-y

    Article  Google Scholar 

  8. Jaganathan S, Vahedi Tafreshi H, Shim E, Pourdeyhimi B (2009) Colloids Surf A 337(1–3):173

    Article  CAS  Google Scholar 

  9. Castéra P, Jeulin D, Bos F, Michaud F, Delisée C (2000) In: Proceedings of the international conference on wood and wood fiber composites. Stuttgart, Germany, p 481

  10. Barbier C (2009) Phys Rev E 80:016115

    Article  Google Scholar 

  11. Barbier C, Dendievel R, Rodney D (2009) Comput Mater Sci 45(3):593

    Article  CAS  Google Scholar 

  12. Carnaby GA, Pan N (1989) Text Res J 59(5):275

    Article  CAS  Google Scholar 

  13. Durville D (2005) J Mater Sci 40(22):5941. doi:10.1007/s10853-005-5061-2

    Article  CAS  Google Scholar 

  14. Mezeix L, Bouet C, Huez J, Poquillon D (2009) J Mater Sci 44(14):3652. doi:10.1007/s10853-009-3483-y

    Article  CAS  Google Scholar 

  15. Badel E, Delisée C, Lux J (2008) Compos Sci Technol 68(7–8):1654

    Article  CAS  Google Scholar 

  16. Isaksson P, Dumont P, Rolland du Roscoat S (2012) Int J Solids Struct 49(13):1900

    Article  CAS  Google Scholar 

  17. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Exp Mech 39(3):261

    Article  Google Scholar 

  18. Germaneau A, Doumalin P, Dupre JC (2008) NDT&E Int 41(6):407

    Google Scholar 

  19. Bornert M, Chaix JM, Doumalin P, Dupre JC, Fournel T, Jeulin D, Maire E, Moreaud M, Moulinec H (2004) Revue des systèmes série Instrumentation Mesure Métrologie 4(3–4):43

    Google Scholar 

  20. Barranger Y, Doumalin P, Dupre JC, Germaneau A, Hedan S, Valle V (2009) Eng Fract Mech 76(15):2371

    Article  Google Scholar 

  21. Zauel R, Yeni YN, Bay BK, Dong XN, Fyhrie DP (2006) J Biomech Eng 128(1):1

    Article  CAS  Google Scholar 

  22. Lenoir N, Bornert M, Desrues J (2007) Strain 43(3):193

    Article  Google Scholar 

  23. Roux S, Hild F, Viot P, Bernard D (2008) Compos A 39(8):1253

    Article  Google Scholar 

  24. Forsberg F, Sjödahl M, Mooser R, Hack E, Wyss P (2010) Strain 46(1):47

    Article  Google Scholar 

  25. http://www.adcis.net

  26. http://rsbweb.nih.gov/ij/

  27. Tran H (2012) PhD thesis, no 4666, Université Bordeaux 1, Bordeaux, France

  28. Serra J (1982) Image analysis and mathematical morphology. Academic Press, New York

    Google Scholar 

  29. Matheron G (1967) Eléments pour une théorie des milieux poreux. Masson, Paris

    Google Scholar 

  30. Hildebrand T, Rüegsegger P (1997) J Micros 185(1)67

  31. Dougherty RP, Kunzelmann KH (2007) In: Microscopy and microanalysis 2007 meeting August 5–9, Ft. Lauderdale

  32. Germaneau A, Doumalin P (2007) Exp Mech 47(4):523

    Article  Google Scholar 

  33. Germaneau A, Doumalin P (2007) Strain 43(3):207

    Article  Google Scholar 

  34. http://www.pprime.fr/?q=en/photomecanique-analyse-experimentale-en-mecanique-des-solides-pem

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Doumalin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, H., Doumalin, P., Delisee, C. et al. 3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation. J Mater Sci 48, 3198–3212 (2013). https://doi.org/10.1007/s10853-012-7100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7100-0

Keywords

Navigation