Skip to main content
Log in

Effect of reheat temperature on continuous cooling bainite transformation behavior in low carbon microalloyed steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of reheat temperature on continuous cooling bainite transformation in a low carbon microalloyed steel was investigated using a dilatometer based on welding thermal simulation process. The variation of microstructure was analyzed in detail by means of optical microscope and transmission electron microscope (TEM). The results showed that the morphology of the main microstructure changes from polygonal ferrite to granular bainite with increasing reheat temperature at a given lower cooling rate. For the higher cooling rate, the microstructure is predominantly lath bainite irrespective of the reheat temperature. The specimens with the relatively fine austenite grain size have the lowest bainite start and finish temperatures among the simulated sub-zones of heat affected zone, which is consistent with the result of the bainite lath width size observed using the TEM. Meanwhile, although the prevailing type of impingement mode of transformation is anisotropic growth impingement for all heat treatment processes, the reheat temperature has some influence on the maximum transformation rate and effective activation energy of bainite transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Offerman SE, Van Dijk NH, Sietsma J, Grigull S, Lauridsen EM, Margulies L, Poulsen HF, Rekveldt MT, Van der Zwaag S (2002) Science 298:1003

    Article  CAS  Google Scholar 

  2. Harrison PL, Farrar RA (1989) Int Mater Rev 34:35

    CAS  Google Scholar 

  3. Zhao JC, Notis MR (1995) Mater Sci Eng R 15:135

    Article  Google Scholar 

  4. Bhadeshia HKDH (1982) Metal Sci 16:159

    Article  CAS  Google Scholar 

  5. Mittemeijer EJ (1992) J Mater Sci 27:3977. doi:10.1007/BF01105093

    Article  CAS  Google Scholar 

  6. Liu F, Sommer F, Mittemeijer EJ (2004) J Mater Sci 39:1621. doi:10.1023/B:JMSC.0000016161.79365.69

    Article  CAS  Google Scholar 

  7. Liu F, Sommer F, Bos C, Mittemeijer (2007) Int Mater Rev 52:193

    Article  CAS  Google Scholar 

  8. Morrison WB (2009) Mater Sci Technol 25:1066

    Article  CAS  Google Scholar 

  9. Gupta C, Dey GK, Chakravartty JK, Srivastav D, Banerjee S (2005) Scr Mater 53:559

    Article  CAS  Google Scholar 

  10. Zhang YQ, Zhang HQ, Liu WM, Hou H (2009) Mater Sci Eng A 499:182

    Article  Google Scholar 

  11. Shome M, Gupta OP, Mohanty ON (2004) Metall Mater Trans A 35:985

    Google Scholar 

  12. Garcia de Andres C, Caballero FG, Capdevila C, Alvarez LF (2002) Mater Charact 48:101

    Article  CAS  Google Scholar 

  13. Matsuzaki A, Bhadeshia HKDH (1994) Mater Sci Technol 15:518

    Article  Google Scholar 

  14. Yamamoto S, Yokoyama H, Yamada K, Niikura M (1995) ISIJ Int 35:1020

    Article  CAS  Google Scholar 

  15. Lee SJ, Park JS, Lee YK (2008) Scr Mater 59:87

    Article  CAS  Google Scholar 

  16. Kishore Babu N, Suresh MR, Sinha PP, Sarma DS (2006) J Mater Sci 41:2971. doi:10.1007/s10853-006-6718-1

    Article  Google Scholar 

  17. Lan L, Qiu C, Zhao D, Li C, Gao X, Du L (2011) Acta Metall Sin 47:1046

    CAS  Google Scholar 

  18. Poorhaydari K, Patchett BM, Ivey DG (2005) Weld J 84:149s

    Google Scholar 

  19. Yu X, Caron JL, Babu SS, Lippold JC, Isheim D, Seidman DN (2010) Acta Mater 58:5596

    Article  CAS  Google Scholar 

  20. Li C, Wang Y, Chen Y (2011) J Mater Sci 46:6424. doi:10.1007/s10853-011-5592-7

    Article  CAS  Google Scholar 

  21. Babu SS (2011) Sci Technol Weld Join 5:26

    Google Scholar 

  22. Krauss G, Thompson SW (1995) ISIJ Int 35:937

    Article  CAS  Google Scholar 

  23. Lan LY, Qiu CL, Zhao DW, Gao XH, Du LX (2011) Mater Sci Technol 27:1657

    CAS  Google Scholar 

  24. Enomoto M (1994) Metall Mater Trans A 25A:1947

    Article  CAS  Google Scholar 

  25. Bhadeshia HKDH (2001) Bainite in steels, 2nd edn. The Institute of Materials, London

    Google Scholar 

  26. Lan L, Qiu C, Zhao D, Gao X, Du L (2012) J Mater Sci 47:4732. doi:10.1007/s10853-012-6346-x

    Article  CAS  Google Scholar 

  27. Kang M, Zhang MX, Zhu M (2006) Acta Mater 54:2121

    Article  CAS  Google Scholar 

  28. Elmer JW, Palmer TA, Zhang W, Wood B, DebRoy T (2003) Acta Mater 51:3333

    Article  CAS  Google Scholar 

  29. Bhadeshia HKDH (1999) Mater Sci Technol 15:22

    Article  CAS  Google Scholar 

  30. Liu F, Song SJ, Sommer F, Mittemeijer EJ (2009) Acta Mater 57:6176

    Article  CAS  Google Scholar 

  31. Kang M, Zhang M, Liu F, Zhu M (2009) Acta Metall Sin 45:25

    CAS  Google Scholar 

Download references

Acknowledgements

The present study is supported by the National Natural Science of China (No. 51074052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangyun Lan or Chunlin Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, L., Qiu, C., Zhao, D. et al. Effect of reheat temperature on continuous cooling bainite transformation behavior in low carbon microalloyed steel. J Mater Sci 48, 4356–4364 (2013). https://doi.org/10.1007/s10853-013-7251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7251-7

Keywords

Navigation