Skip to main content
Log in

Origin and mechanism of torsion fracture in cold-drawn pearlitic steel wires

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structural and mechanical factors that control the torsion fracture behavior of cold-drawn eutectoid steel wires are examined. Two types of the fracture are identified; namely, flat- and cleavage-type. Torsion cracks are found to initiate in ferrite and propagate along the ferrite/cementite interface. The shear stress distribution within the wires is affected not only by the applied torque, but also by the residual stress. The maximum shear stress occurs halfway from center to the surface, where the cracks initiated. The growth of torsion cracks is sensitive to the orientation of cementite lamellas in pearlite grains. The influence of thermal history on the occurrence of cleavage fracture is ascertained, with the assistance of atom probe. It shows that the cleavage fracture results from a decrease in dislocation mobility, caused by thermally activated diffusion of carbon atoms into ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lefever I, D’haene U, Van Raemdonck W, Aernoudt E, Van Houtte P, Sevillano JG (1998) Wire J Int November: 90

  2. Lee SK, Ko DC, Kim BM (2009) Mater Des 30:2919

    Article  CAS  Google Scholar 

  3. Lee SK, Lee SB, Kim BM (2010) J Mater Process Technol 210:776

    Article  CAS  Google Scholar 

  4. Zelin M (2002) Acta Mater 50:4431

    Article  CAS  Google Scholar 

  5. Kanetsuk Y, Hirai Y, Ogawa R (1989) ISIJ Int 29:687

    Article  Google Scholar 

  6. Tarui T, Nishida S, Yoshie A, Ohba H, Asano Y, Ochiai I, Takahashi T (1999) Nippon Steel Tech Rep 80:44

    Google Scholar 

  7. Park DB, Kang EG, Nam WJ (2007) J Mater Process Technol 187–188:178

    Article  Google Scholar 

  8. Bae CM, Nam WJ, Lee CS (1996) Scripta Mater 35:641

    Article  CAS  Google Scholar 

  9. Nam WJ, Bae CM, Oh SJ, Kwon SJ (2000) Scripta Mater 42:457

    Article  CAS  Google Scholar 

  10. Shimizu K, Kawabe N (2002) Wire J Int March: 88

  11. Goes B, Martin-Meizoso A, Gil-Sevillano J, Lefever I, Aernoudt E (1998) Eng Fract Mech 60:255

    Article  Google Scholar 

  12. Fang F, Jiang JH, Tan SY, Ma AB, Jiang JQ (2010) Surf Coat Technol 204:2381

    Article  CAS  Google Scholar 

  13. Willemse PF, Naugton BP, Verbraak CA (1982) Mater Sci Eng 56:25

    Article  Google Scholar 

  14. Yang F, Jiang JQ, Fang F, Wang Y, Ma C (2008) Mater Sci Eng A 486:455

    Article  Google Scholar 

  15. Van Raemdonck W, Lefever I, D’Haene U (1994) Wire J Int June: 68

  16. Toribio J, Ovejero E (1998) Scripta Mater 39:323

    Article  CAS  Google Scholar 

  17. Shu DL (2011) Mechanical Property of Engineering Material. China Machine, Beijing

    Google Scholar 

  18. Dieter GE (1986) Mechanical Metallurgy. McGraw-Hill, United States

    Google Scholar 

  19. Watte P, Van Humbeeck J, Aernoudt E, Lefever I (1996) Scripta Mater 34:89

    Article  CAS  Google Scholar 

  20. Languillaume J, Kapelski G, Baudelet B (1997) Acta Mater 45:1201

    Article  CAS  Google Scholar 

  21. Cordier-Robert C, Forfert B, Bolle B, Fundenberger J, Tidu A (2008) J Mater Sci 43:1241. doi:10.1007/s10853-007-2272-8

    Article  CAS  Google Scholar 

  22. Gavriljuk V (2002) Scripta Mater 46:175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported jointly by the Natural Science Foundation of Jiangsu Province (Grant no. BK2011616) and Southeast University, and was partially funded by the Prospective Study of Industry-University Strategic Research Project of Jiangsu Province (Grant no. BY2011144). The samples were prepared at the Institute of Iron and Steel Research, Jiangsu Province, China, which is partially funded by Science and Technology Support Plan of Zhangjiagang City (Grant No. ZKJ1013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Wang, L., Fang, F. et al. Origin and mechanism of torsion fracture in cold-drawn pearlitic steel wires. J Mater Sci 48, 5528–5535 (2013). https://doi.org/10.1007/s10853-013-7347-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7347-0

Keywords

Navigation