Skip to main content

Advertisement

Log in

Microstructural evolution in ultrafine-grained titanium processed by high-pressure torsion under different pressures

  • Ultrafinegrained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A grade 2 commercially pure (CP) titanium was processed by high-pressure torsion (HPT) at pressures of 3.0 and 6.0 GPa in order to achieve improved strengths. The microhardness values for these Ti samples were plotted against the imposed strain, and the plots show that a higher saturation microhardness of 320 Hv is achieved for the sample processed at 6.0 GPa compared to a microhardness of 305 Hv when using a pressure of 3.0 GPa. The omega ω-phase has been reported in some earlier HPT investigations of pure titanium, but it was not detected in this investigation even after processing at 6.0 GPa. The absence of the ω-phase is attributed to the relatively high level of oxygen (0.25 wt%) in these CP titanium samples. The higher saturation hardness for the 6.0 GPa sample is consistent with the smaller average grain size of ~105 ± 12 nm compared with the measured grain size of ~130 ± 18 nm after processing with an imposed pressure of 3.0 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  2. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979

    Article  Google Scholar 

  3. Islamgaliev RK, Kazyhanov VU, Shestakova LO, Sharafutdinov AV, Valiev RZ (2008) Microstructure and mechanical properties of titanium (Grade 4) processed by high-pressure torsion. Mater Sci Eng, A 493:190–194

    Article  Google Scholar 

  4. Semenova IP, Polyakov AV, Raab GI, Lowe TC, Valiev RZ (2012) Enhanced fatigue properties of ultrafine-grained Ti rods processed by ECAP-Conform. J Mater Sci 47:7777–7781. doi:10.1007/s10853-012-6675-9

    Article  Google Scholar 

  5. Balyanov A, Kutnyakova J, Amirkhanova NA, Stolyarov VV, Valiev RZ, Liao XZ, Zhao YH, Jiang YB, Xu HF, Lowe TC, Zhu YT (2004) Corrosion resistance of ultra fine-grained Ti. Scripta Mater 51:225–229

    Article  Google Scholar 

  6. Nie M, Wang CT, Qu M, Gao N, Wharton JA, Langdon TG (2014) The corrosion behaviour of commercial purity titanium processed by high-pressure torsion. J Mater Sci 49:2824–2831. doi:10.1007/s10853-013-7988-z

    Article  Google Scholar 

  7. Wang CT, Gao N, Gee MG, Wood RJK, Langdon TG (2012) Effect of grain size on the micro-tribological behaviour of pure titanium processed by high-pressure torsion. Wear 280–281:28–35

    Article  Google Scholar 

  8. Wang CT, Gao N, Gee MG, Wood RJK, Langdon TG (2013) Processing of an ultrafine-grained titanium by high-pressure torsion: an evaluation of the wear properties with and without a TiN coating. J Mech Behav Biomed Mater 17:166–175

    Article  Google Scholar 

  9. Wang CT, Escudeiro A, Polcar T, Cavaleiro A, Wood RJK, Gao N, Langdon TG (2013) Indentation and scratch testing of DLC-Zr coatings on ultrafine-grained titanium processed by high-pressure torsion. Wear 306:304–310

    Article  Google Scholar 

  10. Faghihi S, Azari F, Zhilyaev AP, Szpunar JA, Vali H, Tabrizian M (2007) Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion. Biomaterials 28:3887–3895

    Article  Google Scholar 

  11. Sordi VL, Ferrante M, Kawasaki M, Langdon TG (2012) Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling. J Mater Sci 47:7870–7876. doi:10.1007/s10853-012-6593-x

    Article  Google Scholar 

  12. Valiev R (2004) Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater 3:511–516

    Article  Google Scholar 

  13. Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J Mater Res 11:1880–1890

    Article  Google Scholar 

  14. Kocks UF (1976) Laws of work-hardening and low-temperature creep. J. Eng. Mater. Tech. 98:76–85

    Article  Google Scholar 

  15. Estrin Y, Mecking H (1984) A unified phenomenological description of work-hardening and creep based on one-parameter models. Acta Mater 32:57–70

    Article  Google Scholar 

  16. Nes E (1997) Modelling of work hardening and stress saturation in FCC metals. Prog Mater Sci 41:129–193

    Article  Google Scholar 

  17. Hughes DA, Hansen N (2000) Microstructure and strength of nickel at large strains. Acta Mater 48:2985–3004

    Article  Google Scholar 

  18. Mohamed FA, Dheda SS (2012) On the minimum grain size obtainable by high-pressure torsion. Mater Sci Eng, A 558:59–63

    Article  Google Scholar 

  19. Estrin Y, Toth LS, Molinari A, Brechet Y (1998) A dislocation-based model for all hardening stages in large strain deformation. Acta Mater 46:5509–5522

    Article  Google Scholar 

  20. Figueiredo RB, Cetlin PR, Langdon TG (2011) Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater Sci Eng, A 528:8198–8204

    Article  Google Scholar 

  21. Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater 60:3190–3198

    Article  Google Scholar 

  22. Kawasaki M, Langdon TG (2008) The significance of strain reversals during processing by high-pressure torsion. Mater Sci Eng, A 498:341–348

    Article  Google Scholar 

  23. Valiev RZ, Ivanisenko YuV, Rauch EF, Baudelet B (1996) Structure and deformation behaviour of Armco iron subjected to severe plastic deformation. Acta Mater 44:4705–4712

    Article  Google Scholar 

  24. Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Structural refinement of low alloyed steels during severe plastic deformation. Mater Sci Eng, A 387–389:809–816

    Article  Google Scholar 

  25. Wetscher F, Pippan R, Sturm S, Kauffmann F, Scheu C, Dehm G (2006) TEM investigations of the structural evolution in a pearlitic steel deformed by high-pressure torsion. Metall Mater Trans A 37A:1963–1968

    Article  Google Scholar 

  26. Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) Strain gradient plasticity modeling of high-pressure torsion. J Mech Phys Solids 56:1186–1202

    Article  Google Scholar 

  27. Vorhauer A, Pippan R (2004) On the homogeneity of deformation by high pressure torsion. Scripta Mater 51:921–925

    Article  Google Scholar 

  28. Wang J, Horita Z, Furukawa M, Nemoto M, Tsenev NK, Valiev RZ, Ma Y, Langdon TG (1993) An investigation of ductility and microstructural evolution in an Al-3% Mg alloy with submicron grain size. J Mater Res 8:2810–2818

    Article  Google Scholar 

  29. Oh-ishi K, Horita Z, Smith DJ, Langdon TG (2001) Grain boundary structure in Al-Mg and Al-Mg-Sc alloys after equal-channel angular pressing. J Mater Res 16:583–589

    Article  Google Scholar 

  30. Ahuja R, Wills JM, Johansson B, Eriksson O (1993) Crystal structures of Ti, Zr and Hf under compression: theory. Phys. Rev. B 48:16269–16279

    Article  Google Scholar 

  31. Todaka Y, Sasaki J, Moto T, Umemoto M (2008) Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining. Scripta Mater 59:615–618

    Article  Google Scholar 

  32. Ivanisenko Y, Kilmametov A, Rösner H, Valiev RZ (2008) Evidence of α → ω phase transition in titanium after high pressure torsion. Int J Mater Res 99:36–41

    Article  Google Scholar 

  33. Edalati K, Matsubara E, Horita Z (2009) Processing pure Ti by high-pressure torsion in wide range of pressure and strain. Metall Mater Trans A 40A:2079–2086

    Article  Google Scholar 

  34. Sakai G, Horita Z, Langdon TG (2005) Grain refinement and superplasticity in an aluminium alloy processed by high-pressure torsion. Mater Sci Eng A393:344–351

    Article  Google Scholar 

  35. Lee S, Edalati K, Horita Z (2010) Microstructures and mechanical properties of pure V and Mo processed by high-pressure torsion. Mater Trans 51:1072–1079

    Article  Google Scholar 

  36. Zhilyaev AP, Nurislamova GV, Kim B-K, Baró MD, Szpunar JA, Langdon TG (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51:753–765

    Article  Google Scholar 

  37. Hebesberger T, Stüwe HP, Vorhauer A, Wetscher F, Pippan R (2005) Structure of Cu deformed by high pressure torsion. Acta Mater 53:393–402

    Article  Google Scholar 

  38. Langdon TG (2007) The principles of grain refinement in equal-channel angular pressing. Mater Sci Eng A462:3–11

    Article  Google Scholar 

  39. Philibert J (1991) Atom movements: diffusion and mass transport in solids. Editions de Physique, Les Ulis, France, p 110

    Google Scholar 

  40. Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Orientation imaging microscopy of ultrafine-grained nickel. Scripta Mater 46:575–580

    Article  Google Scholar 

  41. Wongsa-Ngam J, Kawasaki M, Langdon TG (2013) A comparison of microstructures and mechanical properties in a Cu-Zr alloy processed using different SPD techniques. J Mater Sci 48:4653–4660. doi:10.1007/s10853-012-7072-0

    Article  Google Scholar 

  42. Sabbaghianrad S, Langdon TG (2014) A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT. Mater Sci Eng, A 596:52–58

    Article  Google Scholar 

  43. Pereira PHR, Figueiredo RB, Huang Y, Cetlin PR, Langdon TG (2014) Modeling the temperature rise in high-pressure torsion. Mater Sci Eng, A 593:185–188

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Ting Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C.T., Fox, A.G. & Langdon, T.G. Microstructural evolution in ultrafine-grained titanium processed by high-pressure torsion under different pressures. J Mater Sci 49, 6558–6564 (2014). https://doi.org/10.1007/s10853-014-8248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8248-6

Keywords

Navigation