Skip to main content
Log in

Sisal fiber-reinforced cement composite with Portland cement substitution by a combination of metakaolin and nanoclay

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports the partial replacement of Portland cement (PC) by combination of metakaolin (MK) and nanoclay (NC) in sisal fiber-reinforced cement composites by studying the microstructure, mechanical behavior, and the interfacial properties between fiber and cement matrices. The mechanical properties of cement matrix and natural fiber-reinforced composites are studied using compressive strength development and flexural behavior, respectively. The tensile behavior of the natural fiber was also investigated and analyzed by Weibull distribution model. The characteristics of hydration products were analyzed by scanning electron microscope, X-ray diffraction, and thermogravimetry analysis. Our results show that the combination of MK and NC can improve the hydration of cement more effectively, with better microstructure and enhanced mechanical properties, than mixes without them. The calcium hydroxide (CH) contents of matrixes with 50 wt% combined substitutions, containing 1, 3, and 5 wt% of nanoclay, were 58.12, 60.16, and 64.25 % less than that of PC, respectively. The ettringite phase is also effectively removed due to the substitution of MK and NC, which improve both Al/Ca and Si/Ca ratios of calcium silicate hydrates (C–S–H) due to the high content of SiO2 and Al2O3. The interfacial bond between fiber and cement matrix and flexural properties of sisal fiber-reinforced cement composites are also significantly improved. The optimum interface adhesion between sisal fiber and matrix was achieved by replacing cement by 27 % MK and 3 % NC, which increased the bond strength and pull-out energy by 131.46 and 196.35 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Antoni M, Rossen J, Martirena F, Scrivener K (2012) Cement substitution by a combination of metakaolin and limestone. Cem Concr Res 42:1579–1589

    Article  Google Scholar 

  2. Li Z, Ding Z (2003) Property improvement of Portland cement by incorporating with metakaolin and slag. Cem Concr Res 33:579–584

    Article  Google Scholar 

  3. Caldaron MA, Gruber KA, Burg RG (1994) High-reactivity metakaolin: a new generation mineral. Concr Int 16(11):37–40

    Google Scholar 

  4. Ding Z, Shao H, Wu K, Zhang X (1997) Influence of metakaolin on properties of Portland cement. China Concr Cem Prod 25

  5. Coleman NJ, Page CL (1997) Aspects of the pore solution chemistry of hydrated cement pastes containing metakaolin. Cem Concr Res 27:147–154

    Article  Google Scholar 

  6. Sha W, Pereira GB (2001) Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity. Cement Concr Compos 23:455–461

    Article  Google Scholar 

  7. Batis G, Pantazopoulou P, Tsivilis S, Badogiannis E (2005) The effect of metakaolin on the corrosion behavior of cement mortars. Cement Concr Compos 27:125–130

    Article  Google Scholar 

  8. Ramezanianpour AA, Bahrami Jovein H (2012) Influence of metakaolin as supplementary cementing material on strength and durability of concretes. Constr Build Mater 30:470–479

    Article  Google Scholar 

  9. Wild S, Khatib JM, Jones A (1996) Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem Concr Res 26:1537–1544

    Article  Google Scholar 

  10. Courard L, Darimont A, Schouterden M, Ferauche F, Willem X, Degeimbre R (2003) Durability of mortars modified with metakaolin. Cem Concr Res 33:1473–1479

    Article  Google Scholar 

  11. Güneyisi E, Gesoğlu M, Algın Z, Mermerdaş K (2014) Optimization of concrete mixture with hybrid blends of metakaolin and fly ash using response surface method. Compos B Eng 60:707–715

    Article  Google Scholar 

  12. Gesoğlu M, Güneyisi E, Özturan T, Mermerdaş K (2014) Permeability properties of concretes with high reactivity metakaolin and calcined impure kaolin. Mater Struct 47:709–728

    Article  Google Scholar 

  13. Mermerdaş K, Gesoğlu M, Güneyisi E, Özturan T (2012) Strength development of concretes incorporated with metakaolin and different types of calcined kaolins. Constr Build Mater 37:766–774

    Article  Google Scholar 

  14. Fernandez R, Martirena F, Scrivener KL (2011) The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res 41:113–122

    Article  Google Scholar 

  15. Rocha JKJ (1990) Festkörper-NMR-Untersuchungen zur Struktur und Reaktivität von Metakaolinit. Angew Chem 102:539–541

    Article  Google Scholar 

  16. Coleman NJ, McWhinnie W (2000) The solid state chemistry of metakaolin-blended ordinary Portland cement. J Mater Sci 35:2701–2710. doi:10.1023/A:1004753926277

    Article  Google Scholar 

  17. He C, Osbaeck B, Makovicky E (1995) Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects. Cem Concr Res 25:1691–1702

    Article  Google Scholar 

  18. Murat M, Comel C (1983) Hydration reaction and hardening of calcined clays and related minerals III. Influence of calcination process of kaolinite on mechanical strengths of hardened metakaolinite. Cem Concr Res 13:631–637

    Article  Google Scholar 

  19. Jahromi SG, Khodaii A (2009) Effects of nanoclay on rheological properties of bitumen binder. Constr Build Mater 23:2894–2904

    Article  Google Scholar 

  20. Arabani AKHM, Mohammadzade Sani A, Kamboozia N (2012) Use of nanoclay for improvement the microstructure and mechanical properties of soil stabilized by cement. In: Proceedings of the 4th international conference on nanostructures (ICNS4) 12–14 March, Kish Island, I.R. Iran

  21. Manzano H, Enyashin AN, Dolado JS, Ayuela A, Frenzel J, Seifert G (2012) Do cement nanotubes exist? Adv Mater 24:3239–3245

    Article  Google Scholar 

  22. Amato I (2013) Green cement: concrete solutions. Natural 494:300–301

    Article  Google Scholar 

  23. Perumalsamy SPS, Balaguru N (1992) Fiber-reinforced cement composites. McGraw-Hill, New York

    Google Scholar 

  24. Elie Awwad DC, Helmi Khatib (2013) Concrete masonry blocks reinforced with local industrial hemp fibers and hurds. In: Third international conference on sustainable construction materials and technologies, Kyoto, Japan

  25. Savastano HJ, Turner A, Mercer C, Soboyejo WO (2006) Mechanical behavior of cement-based materials reinforced with sisal fibers. J Mater Sci 41:6938–6948. doi:10.1007/s10853-006-0218-1

    Article  Google Scholar 

  26. Chen R, Ahmari S, Zhang L (2014) Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. J Mater Sci 49:2548–2558. doi:10.1007/s10853-013-7950-0

    Article  Google Scholar 

  27. Alomayri T, Shaikh FUA, Low IM (2013) Thermal and mechanical properties of cotton fabric-reinforced geopolymer composites. J Mater Sci 48:6746–6752. doi:10.1007/s10853-013-7479-2

    Article  Google Scholar 

  28. Silva FA, Mobasher B, Soranakom C, Filho RDT (2011) Effect of fiber shape and morphology on interfacial bond and cracking behaviors of sisal fiber cement based composites. Cem Concr Compos 33(2011):814–823

    Article  Google Scholar 

  29. Blankenhorn PR, Blankenhorn BD, Silsbee MR, DiCola M (2001) Effects of fiber surface treatments on mechanical properties of wood fiber–cement composites. Cem Concr Res 31:1049–1055

    Article  Google Scholar 

  30. Benzerzour M, Sebaibi N, Abriak NE, Binetruy C (2012) Waste fibre–cement matrix bond characteristics improved by using silane-treated fibres. Constr Build Mater 37:1–6

    Article  Google Scholar 

  31. Tonoli GHD, Belgacem MN, Bras J, Pereira-da-Silva MA, Rocco Lahr FA, Savastano H Jr (2012) Impact of bleaching pine fibre on the fibre/cement interface. J Mater Sci 47:4167–4177. doi:10.1007/s10853-012-6271-z

    Article  Google Scholar 

  32. Wei J, Meyer C (2014) Improving degradation resistance of sisal fiber in concrete through fiber surface treatment. Appl Surf Sci 289:511–552

    Google Scholar 

  33. Hakamy A, Shaikh FUA, Low IM (2014) Thermal and mechanical properties of hemp fabric-reinforced nanoclay–cement nanocomposites. J Mater Sci 49:1684–1694. doi:10.1007/s10853-013-7853-0

    Article  Google Scholar 

  34. Zhandarov S, Mäder E (2005) Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters. Compos Sci Technol 65:149–160

    Article  Google Scholar 

  35. Liu C-H, Nairn JA (1999) Analytical and experimental methods for a fracture mechanics interpretation of the microbond test including the effects of friction and thermal stresses. Int J Adhes Adhes 19:59–70

    Article  Google Scholar 

  36. Deschner F, Winnefeld F, Lothenbach B, Seufert S, Schwesig P, Dittrich S, Goetz-Neunhoeffer F, Neubauer J (2012) Hydration of Portland cement with high replacement by siliceous fly ash. Cem Concr Res 42:1389–1400

    Article  Google Scholar 

  37. De Weerdt K, Haha MB, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B (2011) Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res 41:279–291

    Article  Google Scholar 

  38. De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122

    Article  Google Scholar 

  39. Satyanarayana KG, Sukumaran K, Mukherjee PS, Pavithran C, Pillai SGK (1990) Natural fibre–polymer composites. Cement Concr Compos 12:117–136

    Article  Google Scholar 

  40. Chand N, Tiwary RK, Rohatgi PK (1988) Bibliography resource structure properties of natural cellulosic fibres: an annotated bibliography. J Mater Sci 23:381–387. doi:10.1016/S0149-1970(97)00032-2

    Article  Google Scholar 

  41. Mukherjee PS, Satyanarayana KG (1984) Structure and properties of some vegetable fibres. J Mater Sci 19:3925–3934. doi:10.1007/BF00980755

    Article  Google Scholar 

  42. Matschei T, Lothenbach B, Glasser FP (2007) The AFm phase in Portland cement. Cem Concr Res 37:118–130

    Article  Google Scholar 

  43. Black L, Breen C, Yarwood J, Deng CS, Phipps J, Maitland G (2006) Hydration of tricalcium aluminate (C3A) in the presence and absence of gypsum-studied by Raman spectroscopy and X-ray diffraction. J Mater Chem 16:1263–1272

    Google Scholar 

  44. Hewlett P (2004) Lea’s chemistry of cement and concrete. Butterworth-Heinemann, San Diego

    Google Scholar 

  45. Campbell MD, Coutts RSP (1980) Wood fibre-reinforced cement composites. J Mater Sci 15:1962–1970. doi:10.1007/BF00550621

    Article  Google Scholar 

  46. Coutts RSP, Kightly P (1982) Microstructure of autoclaved refined wood-fibre cement mortars. J Mater Sci 17:1801–1806. doi:10.1007/BF00540809

    Article  Google Scholar 

  47. Andonian R, Mai YW, Cotterell B (1979) Strength and fracture properties of cellulose fibre reinforced cement composites. Int J Cem Compos 1:151–158

    Google Scholar 

  48. Ambroise J, Maximilien S, Pera J (1994) Properties of metakaolin blended cements. Adv Cem Based Mater 1:161–168

    Article  Google Scholar 

  49. Said-Mansour M, Kadri E-H, Kenai S, Ghrici M, Bennaceur R (2011) Influence of calcined kaolin on mortar properties. Constr Build Mater 25:2275–2282

    Article  Google Scholar 

  50. Karihaloo BL, Wang J (2000) Micromechanics of fiber-reinforced cementitious composites. Adv Eng Mater 2:726–732

    Article  Google Scholar 

  51. Tolêdo Filho RD, Scrivener K, England GL, Ghavami K (2000) Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cem Concr Compos 22:127–143

    Article  Google Scholar 

  52. Toledo Filho RD, Silva FA, Fairbairn EMR, Filho JAM (2009) Durability of compression molded sisal fiber reinforced mortar laminates. Constr Build Mater 23:2409–2420

    Article  Google Scholar 

  53. Mohr BJ, Biernacki JJ, Kurtis KE (2007) Supplementary cementitious materials for mitigating degradation of kraft pulp fiber-cement composites. Cem Concr Res 37:1531–1543

    Article  Google Scholar 

  54. Gram HE, Nimityongskul P (1987) Durability of natural fibres in cement-based roofing sheets. In: Proceedings of the symposium on building materials for low-income housing: Asia and Pacific Region, New Delhi: Oxford & IBH Publications, Bangkok, Thailand, pp. 328–334

  55. Tolêdo Filho RD, Ghavami K, England GL, Scrivener K (2003) Development of vegetable fibre–mortar composites of improved durability. Cement Concr Compos 25:185–196

    Article  Google Scholar 

  56. Gram HE (1983) Durability of natural fibers in concrete, in. Swedish Cement and Concrete Research Institute, Stockholm

    Google Scholar 

  57. Singh SM (1985) Alkali resistance of some vegetable fibers and their adhesion with Portland cement. Res Ind 15:121–126

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to Dr. Liming Li of Columbia University’s Carleton Laboratory for his assistance and cooperation throughout this study and Mr. Hugh Mckee from Bast Fibers LLC, Creskill, New Jersey, for supplying the sisal fiber.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Meyer, C. Sisal fiber-reinforced cement composite with Portland cement substitution by a combination of metakaolin and nanoclay. J Mater Sci 49, 7604–7619 (2014). https://doi.org/10.1007/s10853-014-8469-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8469-8

Keywords

Navigation