Skip to main content
Log in

Migration mechanisms of helium in copper and tungsten

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A complete set of migration energies for a He atom moving inside the bulk of the bcc-W and fcc-Cu crystals has been calculated in different configurations using the nudged elastic band method as a tool within the density functional theory formalism. Although the most stable site in the perfect crystal is the tetrahedral position in both cases, the He atoms jump preferentially between two first nearest tetrahedral positions in tungsten, while they migrate through an octahedral position in the case of Cu. As reported before, the He atoms are trapped when they find an n-vacancy. Our results show that the migration energies are lower when the n-vacancies do not contain He atoms, suggesting that vacancies are stabilized and their mobility is reduced by helium trapping, that may end up in bubble coalescence, in agreement with previous findings. The migration energy of the clean n-vacancy decreases as the number n increases, at least up to n = 3, while the situation when He atoms are inside the vacancies is a little bit more complicated. In all the analyzed cases, the energy barriers in W are higher than in Cu. Additionally, a complete analysis of the evolution of the electronic density of states has been performed, that leads to the confirmation of a non-negligible He–metal interaction that significantly contributes to the trapping of helium atoms inside the n-vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Demkowicz MJ, Hoagland RG, Hirth JP (2008) Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys Rev Lett 100:136102

    Article  Google Scholar 

  2. Hattar K, Demkowicz MJ, Misra A, Robertson IM, Hoagland RG (2008) Arrest of He bubble growth in CuNb multilayer nanocomposites. Scr Mater 58:541–544

    Article  Google Scholar 

  3. Demkowicz MJ, Misra A, Caro A (2012) The role of interface structure in controlling high helium concentrations. Curr Opin Solid State Mater Sci 16:101–108

    Article  Google Scholar 

  4. Gao Y, Yang T, Xue J, Yan S, Zhou S, Wanga Y, Kwok DTK, Chu PK, Zhang Y (2011) Radiation tolerance of Cu/W multilayered nanocomposites. J Nucl Mater 413:11–15

    Article  Google Scholar 

  5. Becquart CS, Domain C (2006) Migration energy of He in W revisited by Ab initio calculations. Phys Rev Lett 97:196402

    Article  Google Scholar 

  6. Becquart CS, Domain C (2009) An object kinetic Monte Carlo simulation of the dynamics of helium and point defects in tungsten. J Nucl Mater 385:223–227

    Article  Google Scholar 

  7. Becquart CS, Domain C (2007) Ab initio calculations about intrinsic point defects and He in W. Nucl Instrum Methods Phys Res B 225:23–26

    Article  Google Scholar 

  8. Becquart CS, Domain C, Sarkar U, DeBacker A, Hou M (2010) Microstructural evolution of irradiated tungsten: Ab initio parameterisation of an OKMC model. J Nucl Mater 403:75–88

    Article  Google Scholar 

  9. Li X-C, Shu X, Liu Y-N, Yu Y, Gao F, Lu G-H (2012) Analytical WHe and HHe interatomic potentials for a WHHe system. J Nucl Mater 426:31–37

    Article  Google Scholar 

  10. Henriksson KOE, Nordlund K, Keinonen J, Sundholm D, Patzschle M (2004) Simulations of the initial stages of blistering in helium implanted tungsten. Phys Scr T108:95–98

    Article  Google Scholar 

  11. Henriksson KOE, Nordlund K, Keinonen J (2006) Molecular dynamics simulations of helium cluster formation in tungsten. Nucl Instrum Methods Phys Res Sect B 244:377–391

    Article  Google Scholar 

  12. Amano J, Seidman D (1984) Diffusivity of 3He atoms in perfect tungsten crystals. J Appl Phys 56:983–992

    Article  Google Scholar 

  13. Wagner A, Seidman DN (1979) Range profiles of 300- and 475-eV He+4 ions and the diffusivity of He4 in tungsten. Phys Rev Lett 42:515

    Article  Google Scholar 

  14. Juslin N, Wirth BD (2013) Interatomic potentials for simulation of He bubble formation in W. J Nucl Mater 432:61–66

    Article  Google Scholar 

  15. Juslin N, Nordlund K (2008) Pair potential for FeHe. J Nucl Mater 382:143–146

    Article  Google Scholar 

  16. Terentyev D, Juslin N, Nordlund K, Sandberg N (2009) Fast three dimensional migration of He clusters in bcc Fe and FeCr alloys. J Appl Phys 105:103509

    Article  Google Scholar 

  17. Ventelon L, Willaime F, Fu C-C, Heran M, Ginoux I (2012) Ab initio investigation of radiation defects in tungsten: structure of self-interstitials and specificity of di-vacancies compared to other bcc transition metals. J Nucl Mater 425:16–21

    Article  Google Scholar 

  18. Lam NQ, Doan NV, Dagens L (1985) Multiple defects in copper and silver. J Phys F 15:799–808

    Article  Google Scholar 

  19. Sabochick MJ, Yip S (1988) Migration energy calculations for small vacancy clusters in copper. J Phys F 18:1689–1701

    Article  Google Scholar 

  20. Zhao P, Shimomura Y (1999) Molecular dynamics calculations of properties of the selfinterstitials in copper and nickel. Comp Mat Sci 14:84–90

    Article  Google Scholar 

  21. Wilson WD, Baskes MI, Bisson CL (1976) Atomistics of helium bubble formation in a face-centeretl-cubic metal. Phys Rev B 13:2470–2478

    Article  Google Scholar 

  22. Wang L, Ning X-J (2003) Molecular dynamics simulations of helium behaviour in copper crystals. Chin Phys Lett 20:1416–1419

    Article  Google Scholar 

  23. Evans JH, Escobar Galindo R (2004) A description of bubble growth and gas release during thermal annealing of helium implanted copper. Nucl Instrum Methods Phys Res B 217:276–280

    Article  Google Scholar 

  24. Kashinath A, Demkowicz MJ (2011) A predictive interatomic potential for He in Cu and Nb. Model Simul Mater Sci Eng 19:035007

    Article  Google Scholar 

  25. Dunn AY, McPhie MG, Capolungo L, Martínez E, Cherkaoui M (2013) A rate theory study of helium bubble formation and retention in CuNb nanocomposites. J Nucl Mater 435:141–152

    Article  Google Scholar 

  26. González C, Fernández-Pello D, Cerdeira MA, Palacios SL, Iglesias R (2014) Helium bubble clustering in copper from first principles. Model Simul Mater Sci Eng 22:035019

    Article  Google Scholar 

  27. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:R558

    Article  Google Scholar 

  28. Kresse G, Furthmuller JJ (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  Google Scholar 

  29. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  31. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  32. James AM, Lord MP (1992) Macmillan’s chemical and physical data. Macmillan, Basingstoke

    Google Scholar 

  33. Jonsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore

    Google Scholar 

  34. Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978

    Article  Google Scholar 

  35. See Supplemental Material with the movies of the different migration processes: movie1 shows the tetrahedral to octahedral migration in Cu, movie2 shows the tetrahedral to tetrahedral movement in Cu, movie3/movie4 show the movement of the HeV complex in Cu/W, and movie5/movie6 show the same for the complex HeV 2

  36. Balluffi RW (1978) Vacancy defect mobilities and binding energies obtained from annealing studies. J Nucl Mater 69–70:240

    Article  Google Scholar 

  37. Ullmaier H, Schilling W (1980) Radiation damage in metallic reactor materials, in physics of modern materials, vol I. IAEA, Vienna

    Google Scholar 

  38. Wilson WD, Johnson RD (1972) Rare gases in metals. In: Gehlen PC, Beeler JR Jr, Jaffee RI (eds) Interatomic potentials and simulation of lattice defects. Plenum, New York, p 375

    Chapter  Google Scholar 

  39. Kornelsen EV, Van Gorkum AA (1990) A study of bubble nucleation in tungsten using thermal desorption spectrometry: clusters of 2 to 100 helium atoms. J Nucl Mater 92:79–88

    Article  Google Scholar 

  40. Samaras M (2009) Multiscale modelling: the role of helium in iron. Mater Today 12:46–53

    Article  Google Scholar 

  41. Becquart CS, Domain C (2012) Solutepoint defect interactions in bcc systems: focus on first principles modelling in W and RPV steels. Curr Opin Solid State Mater Sci 16:115–125

    Article  Google Scholar 

  42. You YW, Kong XS, Wua XB, Fang QF, Chen JL, Luo GN, Liu CS (2013) Effect of vacancy on the dissolution and diffusion properties of hydrogen and helium in molybdenum. J Nucl Mater 433:167–173

    Article  Google Scholar 

  43. Was GS (2007) Fundamentals of radiation materials science. Springer, New York 356

    Google Scholar 

  44. Mundy JN, Ockers ST, Smedskjaer LC (1987) Vacancy migration enthalpy in tungsten at high temperatures. Philos Mag A 56:851–860

    Article  Google Scholar 

  45. Dai Y, Odette GR, Yamamoto T (2012) The effects of helium in irradiated structural alloys in Konings RJM in comprehensive nuclear materials. Elsevier, Amsterdam 141

    Google Scholar 

  46. Trocellier P, Agarwal S, Miro S (2014) A review on helium mobility in inorganic materials. J Nucl Mater 445:128–142

    Article  Google Scholar 

  47. Caturla MJ, Soneda N, Alonso E, Wirth BD, Perlado JM (2000) Comparative study of radiation damage accumulation in Cu and Fe. J Nucl Mater 276:13–21

    Article  Google Scholar 

  48. Caturla MJ, Soneda N, Fluss M (2006) Kinetic Monte Carlo simulations applied to irradiated materials: the effect of cascade damage in defect nucleation and growth. J Nucl Mater 351:78–87

    Article  Google Scholar 

  49. Akbarzadeh AR, Chen ZZ, Kioussis N (2009) Crucial role of surface in stability and mobility of vacancy clusters in metals. Phys Rev B 79:195404

    Article  Google Scholar 

  50. Ullmaier H (1991) In: Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, New Series, vol III/25. Springer, Berlin. p 381

  51. Derlet PM, Nguyen-Manh D, Dudarev SL (2007) Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys Rev B 76:054107

    Article  Google Scholar 

  52. Hu W, Shu W, Zhang B (2002) Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials. Comput Mater Sci 23:175–189

    Article  Google Scholar 

  53. Zinkle SJ, Busby JT (2008) Structural materials for fission and fusion energy. Mater Today 12:12–19

    Article  Google Scholar 

  54. van Veen A (1987) Thermal helium desorption spectrometry (THDS) as a tool for the study of vacancies and self-interstitials. Mater Sci Forum 15–18:3–24

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the FP7 project RADINTERFACES and the Spanish Ministry of Economy and Competitiveness project NANO-EXTREM, Ref. MAT2012-38541. Angel Gutiérrez at the UNIOVI Scientific Modelling Cluster is gratefully acknowledged for technical help and CPU time. Some calculations have been performed thanks to the support provided by the Spanish Supercomputing Network (RES) through the Project FI-2014-1-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César González.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, C., Iglesias, R. Migration mechanisms of helium in copper and tungsten. J Mater Sci 49, 8127–8139 (2014). https://doi.org/10.1007/s10853-014-8522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8522-7

Keywords

Navigation