Skip to main content
Log in

Arsenic sulfide nanoparticles prepared by milling: properties, free-volume characterization, and anti-cancer effects

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, nanosuspensions of three arsenic sulfide (As4S4) compounds, commercial synthetic arsenic(II) sulfide, and natural realgar and pararealgar minerals were prepared. Nanosuspensions were obtained by ultrafine wet milling in a circulation mill. The zeta potential and particle size distribution were measured for stability estimation. Structural changes were studied using Raman and Fourier transform infrared spectroscopic methods and positron annihilation lifetime method. The morphology of the prepared nanoparticles was determined using scanning and transmission electron microscopy. The anticancer effects were tested using flow cytometry and western blotting analysis. The average particle size in the individual samples varied from 137 to 153 nm. The effects of milling were associated with the formation of arsenic sulfide crystalline nanoparticles and the fragmentation of the corresponding free-volume entities. Consequently, an increase in the arsenic dissolution was observed. The anti-cancer effects of the nanosuspensions were verified on the human cancer H460 cell line, in which case DNA damage and greater numbers of apoptotic cells were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ito T, Morimoto N, Sadanaga R (1952) The crystal structure of realgar. Acta Crystallogr 5:775–782

    Article  Google Scholar 

  2. Street GB, Munir ZA (1970) The structure and thermal properties of synthetic realgar (As4S4). J Inorg Nucl Chem 32:3769–3774

    Article  Google Scholar 

  3. Bindi L, Bonazzi P (2007) Light-induced alteration of arsenic sulphides: a new product with an orthorhombic crystal structure. Am Miner 92:617–620

    Article  Google Scholar 

  4. Bullen HA, Dorko MJ, Oman JK, Garrett SJ (2003) Valence and core-level binding energy shifts in realgar (As4S4) and pararealgar (As4S4) arsenic sulfides. Surf Sci 531:319–328

    Article  Google Scholar 

  5. Wu J-Z, Ho PC (2006) Evaluation of the in vitro activity and in vivo bioavailability of realgar nanoparticles prepared by cryo-grinding. Eur J Pharm Sci 29:35–44

    Article  Google Scholar 

  6. Ye HQ, Gan L, Yang X-L, Xu H-B (2006) Membrane-associated cytotoxicity induced by realgar in promyelocytic leukemia HL-60 cells. J Ethnopharmacol 103:366–371

    Article  Google Scholar 

  7. Baláž P, Fabián M, Pastorek M, Cholujová D, Sedlák J (2009) Mechanochemical preparation and anticancer effect of realgar As4S4 nanoparticles. Mater Lett 63:1542–1544

    Article  Google Scholar 

  8. Baláž P, Sedlák J (2010) Arsenic in cancer treatment: challenges for application of realgar nanoparticles (A minireview). Toxins 2:1568–1581

    Article  Google Scholar 

  9. Wu J, Shao Y, Liu J, Chen G, Ho PC (2011) The medical use of realgar (As4S4) and its recent development as an anticancer agentm. J Ethnopharmacol 135:595–602

    Article  Google Scholar 

  10. Baláž P, Sedlák J, Pastorek M, Cholujová D, Vignarooban K, Bhosle S, Boolchand P, Bujňáková Z, Dutková E, Kartachova O, Stalder B (2012) Arsenic sulphide As4S4 nanoparticles: physico-chemical properties and anti-cancer effects. J Nano R 18–19:149–155

    Google Scholar 

  11. Jakubíková J, Hideshima T, Groen RWJ, Cholujová D, Bujňáková Z, Laubach JP, Munshi NC, Richardson PG, Mitsiades CS, Baláž P, Sedlák J, Anderson KC (2013) Nanoparticle arsenic compound realgar effectively targets myeloma stem-like side population. Blood 122:4455

    Google Scholar 

  12. Yuan L, Wang C, Liu W, Gou B, Zhang T (2013) Realgar induces differentiation through ROS-dependent mitochondrial pathway in HL-60 cells. J Chinese Pharm Sci 22:184–189

    Article  Google Scholar 

  13. Tian Y, Wang X, Xi R, Pan W, Jiang S, Li Z, Zhao Y, Gao G, Liu D (2014) Enhanced antitumor activity of realgar mediated by milling to nanosize. Int J Nanomed 9:745–757

    Google Scholar 

  14. Junghanns JU, Müller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed 3:295–309

    Google Scholar 

  15. Liu P, Rong X, Laru J, van Ven B, Kiesvaara J, Hirvonen J, Laaksonen T, Peltonen L (2011) Nanosuspensions of poorly soluble drugs: preparation and development by wet milling. Int J Pharm 411:215–222

    Article  Google Scholar 

  16. Merisko-Liversidge E, Liversidge GG (2011) Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliver Rev 63:427–440

    Article  Google Scholar 

  17. Baláž P, Bujňáková Z, Kartachova O, Fabián M, Stalder B (2013) Properties and bioaccesibility of arsenic sulphide nanosuspensions. Mater Lett 104:84–86

    Article  Google Scholar 

  18. Brough C, Williams RO 3rd (2013) Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm 453:157–166

    Article  Google Scholar 

  19. Möschwitzer JP (2013) Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 453:142–156

    Article  Google Scholar 

  20. Mishra PR, Shaal LA, Müller RH, Keck CM (2009) Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm 371:182–189

    Article  Google Scholar 

  21. Wu L, Zhang J, Watanabe W (2011) Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 63:456–469

    Article  Google Scholar 

  22. Baláž P, Nguyen AV, Fabián M, Cholujová D, Pastorek M, Sedlák J, Bujňáková Z (2011) Properties of arsenic sulfide As4S4 nanoparticles prepared by high-energy milling. Powder Technol 2–3:232–236

    Google Scholar 

  23. Chen P, Yan L, Leng F, Nan W, Yue X, Zheng Y, Feng N, Li H (2011) Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Bioresour Technol 102:3260–3267

    Article  Google Scholar 

  24. Zhang J, Zhang X, Ni Y, Yang X, Li H (2007) Bioleaching of arsenic from medicinal realgar by pure and mixed cultures. Process Biochem 42:1265–1271

    Article  Google Scholar 

  25. Zhang J, Zhang B, Wang X, Pang RJ, Li H (2008) Enhancement of a bioleaching solution for dissolution rate and bioavailability of medical realgar, a poorly water-soluble arsenical compound (As2S2), by bacteria. J Biotechnol 136:S499

    Article  Google Scholar 

  26. Stafilov T, Angelov N, Jaćimović R, Stibilj V (2005) Determination of trace elements in arsenic and antimony minerals by atomic absorption spectrometry and k0-instrumental neutron activation analysis after As and Sb removal. Microchim Acta 149:229–237

    Article  Google Scholar 

  27. Shpotyuk O, Filipecki J (2003) Free volume in vitreous chalcogenide semiconductors: possibilities of positron annihilation lifetime study. Publishing House WSP, Czestochowa, p 185

    Google Scholar 

  28. Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spactra. Nucl Instrum Methods A 374:235–244

    Article  Google Scholar 

  29. Krause-Rehberg K, Leipner HS (1999) Positron annihilation in semiconductors. Defect studies. Springer, Berlin, p 394

    Book  Google Scholar 

  30. Hörter D, Dressman JB (2001) Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev 46:75–87

    Article  Google Scholar 

  31. Wu JP, Chang LW, Yao HT, Chang H, Tsai HT, Tsai MH, Yeh TK, Lin PP (2009) Involvement of oxidative stress and activation of aryl hydrocarbon receptor in elevation of CYP1A1 expression and activity in lung cells and tissues by arsenic: an in vitro and in vivo study. Toxicol Sci 107:385–393

    Article  Google Scholar 

  32. Naumov P, Makreski P, Jovanovski G (2007) Direct atomic scale observation of linkage isomerization of As4S4 clusters during the photoinduced transition of realgar to pararealgar. Inorg Chem 46:10624–10631

    Article  Google Scholar 

  33. Naumov P, Makreski P, Petruševski G, Runčevski T, Jovanovski G (2010) Visualization of a discrete solid-state process with steady-state X-ray diffraction: observation of hopping of sulfur atoms in single crystals of realgar. JACS 132:11398–11401

    Article  Google Scholar 

  34. Douglass DL, Shing C, Wang G (1992) The light-induced alteration of realgar to pararealgar. Am Miner 77:1266–1274

    Google Scholar 

  35. Trentelman K, Stodulski L, Pavlovski M (1996) Characterization of pararealgar and other light-induced transformation products from realgar by Raman spectroscopy. Anal Chem 68:1755–1761

    Article  Google Scholar 

  36. Baláž P, Choi WS, Dutková E (2007) Mechanochemical modification of properties and reactivity of nanosized arsenic sulphide As4S4. J Phys Chem Solids 68:1178–1183

    Article  Google Scholar 

  37. Bonazzi P, Bindi L, Muniz-Miranda M, Chelazzi L, Rödl T, Pfitzner A (2011) Light-induced molecular change in HgI2.As4S4: evidence by single-crystal X-ray diffraction and Raman spectroscopy. Am Miner 96:646–653

    Article  Google Scholar 

  38. Wang XH, Qiao X, Chen J, Wang X, Ding S (2005) Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 94:449–453

    Article  Google Scholar 

  39. Klym H, Ingram A, Shpotyuk O, Filipecki J, Hadzaman I (2007) Extended positron-trapping defects in insulating MgAl2O4 spinel-type ceramics. Phys Status Solidi C 4:715–718

    Article  Google Scholar 

  40. Golovchak R, Ingram A, Kozyukhin S, Shpotyuk O (2013) Free volume fragmentation in glassy chalcogenides during natural physical ageing as probed by PAL spectroscopy. J Non Cryst Solids 377:49–53

    Article  Google Scholar 

  41. Müller RH (1991) Colloidal carriers for controlled drug delivery and targeting. Wissenschaftliche Verlagsgesellschaft mbH, CRC Press, Stuttgart, Boston

  42. Zhang Y-N, Sun G-X, Williams PN, Huang Q, Zhu Y-G (2011) Assessment of the solubility and bioaccessibility of arsenic in realgar wine using a simulated gastrointestinal system. Sci Total Environ 409:2357–2360

    Article  Google Scholar 

  43. Kwan SY, Tsui SK, Man TO (2011) Release of soluble arsenic from realgar in simulated gastric juice. Anal Lett 34:1431–1436

    Article  Google Scholar 

  44. Wu XH, Sun DH, Zhuang ZX, Wang XR, Gong HF, Hong JX, Lee FSC (2002) Analysis and leaching characteristics of mercury and arsenic in Chinese medical material. Anal Chim Acta 453:311–323

    Article  Google Scholar 

  45. Koch J, Sylvester S, Lai VWM, Owen A, Reimer KJ, Cullen WR (2007) Bioaccessibility and extraction of arsenic in Niu Huang Jie Du Pian pills. Toxicol Appl Pharm 222:357–364

    Article  Google Scholar 

  46. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5863

    Article  Google Scholar 

  47. Pastorek M, Gronesová P, Cholujová D, Hunáková Ľ, Bujňáková Z, Baláž P, Duraj J, Lee TC, Sedlák J (2014) Realgar (As4S4) nanoparticles and arsenic trioxide (As2O3) induced autophagy and apoptosis in human melanoma cells in vitro. Neoplasma 61:700–709

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agency for Science and Development (projects LPP-0107-09, APVV-0189-10), the Slovak Grant Agency (projects VEGA 2/0027/14, 2/0064/14), the Slovak-Taiwan project SAS-NSC JRP 2010/03, and the European Regional Development Fund (ITMS:26220120048). PM acknowledges for financial support from Ministry of Education and Science of R. Macedonia. TCL acknowledges Dr. Pinping Lin, National Research Institutes of Health, Miaoli, Taiwan, for ICP-MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdenka Bujňáková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bujňáková, Z., Baláž, P., Makreski, P. et al. Arsenic sulfide nanoparticles prepared by milling: properties, free-volume characterization, and anti-cancer effects. J Mater Sci 50, 1973–1985 (2015). https://doi.org/10.1007/s10853-014-8763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8763-5

Keywords

Navigation