Skip to main content
Log in

Chemical synthesis and application of palladium nanoparticles

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the past, palladium as a member of the platinum group metals was mainly known as an expensive noble metal. Probably, only fast hydrogen absorption into bulk palladium reminded of its unique catalytic activity. At the beginning of the twenty-first century, detailed studies of the electron structure of palladium atom/nanocluster/nanoparticles launched a new understanding of the selective catalytic activity of this noble metal. This review presents the simplest and most useful methods of synthesizing palladium in a nano scale. In addition, the most famous and required applications of nano-palladium are described in the second half of the review. With the rapid development of nanotechnologies, palladium nanoparticles are becoming prospective selective catalysts for complex chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hammond CR (2004) The elements. In: Hammond CR (ed) Handbook of chemistry and physics, 81st edn. CRC press, London ISBN 0-8493-0485-7

    Google Scholar 

  2. Powers DC, Ritter T (2011) Palladium(III) in synthesis and catalysis. In: Canty AJ (ed) Higher oxidation state organopalladium and platinum chemistry. Springer, Berlin, pp 129–156

    Google Scholar 

  3. Chen WZ, Shimada S, Tanaka M (2002) Synthesis and structure of formally hexavalent palladium complexes. Science 295:308–310

    Google Scholar 

  4. Crabtree RH (2002) A new oxidation state for Pd? Science 295:288–289

    Google Scholar 

  5. Weiss BM, Iglesia E (2010) Mechanism and site requirements for NO oxidation on Pd catalysts. J Catal 272:74–81

    Google Scholar 

  6. Zhang X, Lee CSM, Mingos DMP, Hayward DO (2003) Oscillatory behaviour during the oxidation of methane over palladium metal catalysts. Appl Catal A 240:183–197

    Google Scholar 

  7. Brown WH, Foote CS, Iverson BL, Anslyn EV (2009) Organic chemistry, 5th edn. Brooks/Cole-Cengage Learning, Belmont

    Google Scholar 

  8. Heck RF, Nolley JP (1972) Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J Org Chem 37:2320–2322

    Google Scholar 

  9. Miyaura N, Yamada K, Suzuki A (1979) A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett 20:3437–3440

    Google Scholar 

  10. Drahl C (2008) Palladium’s hidden talent. Chem Eng News 86:53–56

    Google Scholar 

  11. Tsuji J (2004) Palladium Reagents and Catalysts: New Perspectives for the 21st Century. John Wiley & Sons, Chichester

    Google Scholar 

  12. Abad A, Almela C, Corma A, Garcia H (2006) Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts. Tetrahedron 62:6666–6672

    Google Scholar 

  13. Bianchini C, Shen P (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109:4183–4206

    Google Scholar 

  14. Carrera-Cerritos R, Guerra-Balcázar M, Fuentes-Ramírez R, Ledesma-García J, Arriaga LG (2012) Morphological effect of Pd catalyst on ethanolelectro-oxidation reaction. Materials 5:1686–1697

    Google Scholar 

  15. Fan Y, An Z, Pan X, Liu X, Bao X (2009) Quinone tailored selective oxidation of methane over palladium catalyst with molecular oxygen as an oxidant. Chem Commun 48:7488–7490

    Google Scholar 

  16. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    Google Scholar 

  17. Carbone L, Cozzoli PD (2010) Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5:449–493

    Google Scholar 

  18. Bigall NC, Parak WJ, Dorfs D (2012) Fluorescent, magnetic and plasmonic-hybrid multifunctional colloidal nano objects. Nano Today 7:282–296

    Google Scholar 

  19. Guo S, Wang E (2011) Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6:240–264

    Google Scholar 

  20. Garcia-Martinez JC, Scott RWJ, Crooks RM (2003) Extraction of monodisperse palladium nanoparticles from dendrimer templates. J Am Chem Soc 125:11190–11191

    Google Scholar 

  21. Tamura M, Fujihara H (2003) Chiral bisphosphine BINAP-stabilized gold and palladium nanoparticles with small size and their palladium nanoparticle-catalyzed asymmetric reaction. J Am Chem Soc 125:15742–15743

    Google Scholar 

  22. Toshima N, Shiraishi Y, Teranishi T, Miyake M, Tominaga T, Watanabe H, Brijoux W, Bönnemann H, Schmid G (2001) Various ligand-stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase. Appl Organomet Chem 15:178–196

    Google Scholar 

  23. Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillón S, Chaudret B (2004) A case for enantioselective allylic alkylation catalyzed by palladium nanoparticles. J Am Chem Soc 126:1592–1593

    Google Scholar 

  24. Wu ML, Chen DH, Huang TC (2001) Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 17:3877–3883

    Google Scholar 

  25. Chechik V, Zhao M, Crooks RM (2000) Dendrimer-encapsulated Pd nanoparticles as fluorous phase-soluble catalysts. J Am Chem Soc 122:1243–1244

    Google Scholar 

  26. Richter J, Seidel R, Kirsch R, Mertig M, Pompe W, Plaschke J, Schackert HK (2000) Nanoscale palladium metallization of DNA. Adv Mater 12:507–510

    Google Scholar 

  27. Bönnemann H, Richards RM (2001) Nanoscopic metal particles—synthetic methods and potential applications. Eur J Inorg Chem 10:2455–2480

    Google Scholar 

  28. Bradley JS (1994) The chemistry of transitional metal colloids. In: Schmid G (ed) Clusters and colloids: from theory to application. VCH, Weinheim, pp 469–473

    Google Scholar 

  29. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical, applications. New J Chem 22:1179–1201

    Google Scholar 

  30. Liu X, Wang D, Li Y (2012) Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 7:448–466

    Google Scholar 

  31. Skowroński JM, Rozmanowski T (2013) Relationship between the reactions of hydrogen sorption/desorption and methanol oxidation on bifunctional Ni/Pd electrode in alkaline solution. J Solid State Electrochem 17:949–960

    Google Scholar 

  32. Yang CC, Wan CC, Lee CL (2004) Palladium nanopareticles. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Valencia: CA, pp 397–413

    Google Scholar 

  33. Jain TK, Cassin G, Badiali JP, Pileni MP (1996) Relation between exchange process and structure of AOT reverse micellar system. Langmuir 12:2408–2411

    Google Scholar 

  34. Pileni MP (1997) Nanosized particles made in colloidal assemblies. Langmuir 13:3266–3276

    Google Scholar 

  35. Arcoleo V, Cavallaro G, Manna GLA, Liveri VT (1995) Calorimetric investigation on the formation of palladium nanoparticles in water/AOT/n-heptane microemulsions. Thermochim Acta 254:111–119

    Google Scholar 

  36. Chen DH, Wang CC, Huang TC (1999) Preparation of palladium ultrafine particles in reverse micelles. J Colloid Interface Sci 210:123–129

    Google Scholar 

  37. Wu ML, Chen DH, Huang TC (2001) Preparation of Pd/Pt bimetallic nanoparticles in water/AOT/isooctane microemulsions. J Colloid Interface Sci 243:102–108

    Google Scholar 

  38. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-Encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190

    Google Scholar 

  39. Chechik V, Zhao M, Crooks RM (1999) Self-assembled inverted micelles prepared from a dendrimer template: phase transfer of encapsulated guests. J Am Chem Soc 121:4910–4911

    Google Scholar 

  40. Lee KB, Lee SM, Cheon J (2001) Size-controlled synthesis of Pd nanowires using a mesoporous silica template via chemical vapor infiltration. Adv Mater 13:517–520

    Google Scholar 

  41. Kang H, Jun YW, Park JI, Lee KB, Cheon J (2000) Synthesis of porous palladium superlattice nanoballs and nanowires. Chem Mater 12:3530–3532

    Google Scholar 

  42. Kuwahara M, Ogawa S, Ichikawa S (1995) Effect of palladium particle size on the appearance of superstructure of graphite in palladium/graphite model catalyst. Surface Sci 344:L1259–L1263

    Google Scholar 

  43. Xiao JP, Xie Y, Tang R, Chen M, Tian XB (2001) Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures. Adv Mater 13:1887–1891

    Google Scholar 

  44. Verlato E, Cattarin S, Comisso N, Gambirasi A, Musiani M, Vázquez-Gómez L (2012) Preparation of Pd-modified Ni foam electrodes and their use as anodes for the oxidation of alcohols in basic media. Electrocatal 3:48–58

    Google Scholar 

  45. Mbindyo KN, Mallouk TE, Mattzela JB, Kratochvilova I, Razavi B, Jackson TN, Mayer TS (2002) Template synthesis of metal nanowires containing monolayer molecular junctions. J Am Chem Soc 124:4020–4026

    Google Scholar 

  46. Wang LZ, Shi JL, Yu J, Zhang WH, Yan DS (2000) Temperature control in the synthesis of cubic mesoporous silica materials. Mater Lett 45:273–278

    Google Scholar 

  47. Lin HP, Cheng YR, Liu SB, Mou CY (1999) The effect of alkan-1-ols addition on the structural ordering and morphology of mesoporous silicate MCM-41. J Mater Chem 9:1197–1201

    Google Scholar 

  48. Walter J (2000) Template-assisted growth of hexagonal poly- or single-crystalline quasi-2D palladium nanoparticles. Adv Mater 12:31–33

    Google Scholar 

  49. Xue B, Chen P, Hong Q, Lin J, Tan KL (2001) Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J Mater Chem 11:2378–2381

    Google Scholar 

  50. Guo DJ, Li HL (2004) Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces. Electrochem Commun 6:999–1003

    Google Scholar 

  51. Feng C, Guo L, Shen Z, Gong J, Li XY, Liu C, Yang S (2008) Synthesis of short palladium nanoparticle chains and their application in catalysis. Solid State Sci 10:1327–1332

    Google Scholar 

  52. Liang C, Xia W, Berg M, Wang Yu, Soltani-Ahmadi H, Schluter O, Fischer RA, Muhler M (2009) Synthesis and catalytic performance of Pd nanoparticle/functionalized CNF composites by a two-step chemical vapor deposition of Pd(allyl)(Cp) precursor. Chem Mater 21:2360–2366

    Google Scholar 

  53. Xu C, Liu Y, Yuan D (2007) Pt and Pd supported on carbon microspheres for alcohol electrooxidation in alkaline media. Int J Electrochem Sci 2:674–680

    Google Scholar 

  54. Lee CL, Wan CC, Wang YY (2000) Synthesis of metal nanoparticles via self-regulated reduction by an alcohol surfactant. Adv Funct Mater 11:344–347

    Google Scholar 

  55. Auvray X, Petipas C, Lattes A, Rico-Lattes I (1997) Role of solvent-head-group interaction on the formation of lyotropic liquid-crystals in structured non-aqueous solvents. Colloid Surf A 123:247–251

    Google Scholar 

  56. Hendrikx Y, Pansu B (1996) Sequence of phase transformations in the ternary lyotropic system sodium decyl sulfate/2-octanol/water. J Phys II (France) 6:33–47

    Google Scholar 

  57. Dhas NA, Gedanken (1998) A Sonochemical preparation and properties of nanostructured palladium metallic clusters. J Mater Chem 8:445–450

    Google Scholar 

  58. Okitsu K, Bandow H, Maeda Y (1996) Sonochemical preparation of ultrafine palladium particles. Chem Mater 8:315–317

    Google Scholar 

  59. Dhas NA, Cohen H, Gedanken A (1997) A In situ preparation of amorphous carbon-activated palladium nanoparticles. J Phys Chem B 101:6834–6838

    Google Scholar 

  60. Chen W, Cai W, Lei Y, Zhang L (2001) A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica. Mater Lett 50:53–56

    Google Scholar 

  61. Venezia AM, Rossi A, Duca D, Martorana A, Deganello G (1995) Particle size and metal-support interaction effects in pumice supported palladium catalysts. Appl Cat A 125:113–128

    Google Scholar 

  62. Reetz MT, Winter M, Breinbauer R, Thurn-Albrecht T, Vogel W (2001) Size-selective electrochemical preparation of surfactant-stabilized Pd-Ni- and Pt/Pd colloids. Chem Eur J 7:1084–1094

    Google Scholar 

  63. Yu Y, Zhang J (2009) Electrodeposition and characterization of Pd nanoparticles doped amorphous hydrogenated carbon films. Solid State Sci 11:1929–1932

    Google Scholar 

  64. Rezaei M, Tabaian SH, Haghshenas DF (2012) Nucleation and growth of Pd nanoparticles during electrocrystallization on pencil graphite. Electrochim Acta 59:360–366

    Google Scholar 

  65. Arslan E, Çakır S (2014) A novel palladium nanoparticles-polyproline-modified graphite electrode and its application for determination of curcumin. J Solid State Electrochem 18:1611–1620

    Google Scholar 

  66. Song YJ, Kim JY, Park KW (2009) Synthesis of Pd dendritic nanowires by electrochemical deposition. Cryst Growth Des 9:505–507

    Google Scholar 

  67. Reetz MT, Helbig W, Quaiser SA (1995) Electrochemical preparation of nanostructural bimetallic clusters. Chem Mater 7:2227–2228

    Google Scholar 

  68. Teranishi T, Miyake M (1999) Novel synthesis of monodispersed Pd/Ni nanoparticles. Chem Mater 11:3414–3416

    Google Scholar 

  69. Jiang C, Lin X (2008) A novel nanocomposite of Pd nanocluster/poly(N-acetylaniline) nanorod modified electrode for the electrocatalytic reduction of oxygen. J Appl Electrochem 38:1659–1664

    Google Scholar 

  70. Schmid G, Chi LF (1998) Metal clusters and colloids. Adv Mater 10:515–526

    Google Scholar 

  71. Yonezawa T, Imamura K, Kimizuka N (2001) Direct preparation and size control of palladium nanoparticle hydrosols by water-soluble isocyanide ligands. Langmuir 17:4701–4703

    Google Scholar 

  72. Quiros I, Yamada M, Kubo K, Mizutani J, Kurihara M, Nishihara H (2002) Preparation of alkanethiolate-protected palladium nanoparticles and their size dependence on synthetic conditions. Langmuir 18:1413–1418

    Google Scholar 

  73. Hirai H, Yakura N, Seta Y, Hodoshima S (1998) Characterization of palladium nanoparticles protected with polymer as hydrogenation catalyst. React Funct Polym 37:121–131

    Google Scholar 

  74. Yagi S, Ashida T, Nomoto T, Namatame H, Taniguchi M (2008) Characterization of Pd(PVP) nanoparticles studied by AFM, Pd L3-edge and Cl K-edge NEXAFS. J Surf Anal 14:444–448

    Google Scholar 

  75. Durap F, Metin Ö, Audemir M, Özkar S (2009) New route to synthesis of PVP-stabilized palladium(0) nanoclusters and their enhanced catalytic activity in Heck and Suzuki cross-coupling reactions. Appl Organomet Chem 23:498–503

    Google Scholar 

  76. Johnson MP (2007) Synthesis of palladium nanoparticles for methanol steam reforming catalyst. In: Mallison MC (ed) The 2007 National Nanotechnology Infrastructure Network Research Experience for Undergraduates Program Research Accomplishments. NNIN REU, Santa Barbara, pp 128–130

    Google Scholar 

  77. Shen CM, Su YK, Yang HT, Yang TZ, Gao HJ (2003) Synthesis and characterization of n-octadecayl mercaptan-protected palladium nanoparticles. Chem Phys Lett 373:39–45

    Google Scholar 

  78. Ramirez E, Jansat S, Philippot K, Lecante P, Gomez M, Masdeu-Bulto AM, Chaudret B (2004) Influence of organic ligands on the stabilization of palladium nanoparticles. J Organomet Chem 689:4601–4610

    Google Scholar 

  79. Choo HP, Liew KY, Liu H (2002) Factors affecting the size of polymer stabilized Pd nanoparticles. J Mater Chem 12:934–937

    Google Scholar 

  80. Teranishi T, Miyake M (1998) Size control of palladium nanoparticles and their crystal structures. Chem Mater 10:594–600

    Google Scholar 

  81. Lu LH, Wang HS, Xi SQ, Zhang HJ (2002) Improved size control of large palladium nanoparticles by a seeding growth method. J Mater Chem 12:156–158

    Google Scholar 

  82. Li Y, Boone E, El-Sayed MA (2002) Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 18:4921–4925

    Google Scholar 

  83. Li Y, El-Sayed MA (2001) The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution. J Phys Chem B 105:8938–8943

    Google Scholar 

  84. Piccolo L, Henry CR (2001) NO–CO reaction kinetics on Pd/MgO model catalysts: morphology and support effects. J Mol Catal A 167:181–190

    Google Scholar 

  85. Kim SW, Kim M, Lee WY, Hyeon T (2002) Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J Am Chem Soc 124:7642–7643

    Google Scholar 

  86. Jamwal N, Sodhi RK, Gupta P, Paul S (2011) Nano Pd(0) supported on cellulose: a highly efficient and recyclable heterogeneous catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols under liquid phase catalysis. Int J Biol Macromol 49:930–935

    Google Scholar 

  87. Bradly JS, Hill EW, Behal S, Klein C, Chaudret B, Duteil A (1992) Preparation and characterization of organosols of monodispersed nanoscale palladium. Particle size effects in the binding geometry of adsorbed carbon monoxide. Chem Mater 4:1234–1239

    Google Scholar 

  88. Bars JL, Specht U, Bradley JS, Blackmond DG (1999) A catalytic probe of the surface of colloidal palladium particles using Heck coupling reactions. Langmuir 15:7621–7625

    Google Scholar 

  89. Augustine RL, O’Leary ST (1995) Heterogeneous catalysis in organic chemistry. Part 10. Effect of the catalyst support on the regiochemistry of the heck arylation reaction. J Mol Catal A 95:277–285

    Google Scholar 

  90. Klingelhölfer S, Heitz W, Greiner A, Oestreich S, Föerster S, Antonietti M (1997) Preparation of palladium colloids in block copolymer micelles and their use for the catalysis of the Heck reaction. J Am Chem Soc 119:10116–10120

    Google Scholar 

  91. Reetz MT, Westermann E (2000) Phosphane-free palladium-catalyzed coupling reactions: the decisive role of Pd nanoparticles. Angew Chem Int Ed 39:165–168

    Google Scholar 

  92. Thathagar MB, Beckers J, Rothenberg G (2002) Copper-catalyzed Suzuki cross-coupling using mixed nanocluster catalysts. J Am Chem Soc 124:11858–11859

    Google Scholar 

  93. Nui Y, Yeung LK, Crooks RM (2001) Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles. J Am Chem Soc 123:6840–6846

    Google Scholar 

  94. Zhao M, Crooks RM (1999) Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew Chem Int Ed 38:364–366

    Google Scholar 

  95. Mayer ABR, Mark JE, Hausner SH (1998) Palladium nanocatalysts protected by polyacids. J Appl Polym Sci 70:1209–1219

    Google Scholar 

  96. Ohde H, Wai CM, Kim H, Kim J, Ohde M (2002) Hydrogenation of olefins in supercritical CO2 catalyzed by palladium nanoparticles in a water-in-CO2 microemulsion. J Am Chem Soc 124:4540–4541

    Google Scholar 

  97. Wu B, Kuang Y, Zhang X, Chen J (2011) Noble metal nanoparticles/carbon nanotubes nanohybrids: synthesis and applications. Nano Today 6:75–90

    Google Scholar 

  98. Chun YS, Shin JY, Song CE, Lee S (2008) Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid. Chem Commun 8:942–944

    Google Scholar 

  99. Nützenadel C, Züttel A, Chartouni D, Schmid G, Schlapbach L (2000) Critical size and surface effect of the hydrogen interaction of palladium clusters. Eur Phys J D 8:245–250

    Google Scholar 

  100. Watari N, Ohnishi S, Ishii Y (2000) Hydrogen storage in Pd clusters. J Phys Condens Matter 12:6799–6823

    Google Scholar 

  101. Prestianni A, Ferrante F, Sulman EM, Duca D (2014) Small palladium clusters on a hypercrosslinked polystyrene matrix. J Phys Chem C 118:21006–21013

    Google Scholar 

  102. Tran NT, Powell DR, Dahl LF (2000) Nanosized Pd145(CO) x (PEt3)30 containing a capped three-shell 145-atom metal-core geometry of pseudo icosahedral symmetry. Angew Chem Int Ed 39:4121–4125

    Google Scholar 

  103. de Jongh LJ (1998) Metal-cluster compounds: Model systems for nanosized metal particles. Appl Organomet Chem 12:393–399

    Google Scholar 

  104. Stromnova TA, Moiseev II (1998) Palladium carbonyl complexes. Russ Chem Rev 67:485–491

    Google Scholar 

  105. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1713

    Google Scholar 

  106. Schmid G, Harms M, Malm JO, Bovin JO, van Ruitenbeck J, Zandbergen HW, Fu WT (1993) Ligand-stabilized giant palladium clusters: promising candidates in heterogeneous catalysis. J Am Chem Soc 115:2046–2050

    Google Scholar 

  107. Mednikov EG, Jewell MC, Dahl LF (2007) Nanosized (μ12-Pt)Pd164−xPtx(CO)72(PPh3)20 (x≈7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x≈60) containing capped three-shell Pd145 core. J Am Chem Soc 129:11619–11630

    Google Scholar 

  108. Femoni C, Iapalucci MC, Longoni G, Svensson PH, Zanello P, Fabrizi de Biani F (2004) Synthesis and characterisation of ν3-octahedral [Ni36Pd8(CO)48]6− and [Ni35Pt9(CO)48]6− clusters displaying unexpected surface segregation of Pt atoms and molecular and/or crystal substitutional Ni/Pd and Ni/Pt disorder. Chem Eur J 10:2318–2326

    Google Scholar 

  109. Djokić SS, Cavallottiin PL (2010) Electroless deposition: theory and applications. In: Djokić SS (ed) Modern aspects of electrochemistry. Electrodeposition. Theory and Practice. Springer, New York, pp 251–289

    Google Scholar 

  110. Yosi SD, Dubin V, Angual M (1995) Electroless copper deposition for ULSI. Thin Solid Films 262:93–103

    Google Scholar 

  111. Osaka T, Nagasaka H, Goto F (1981) Effects of activation and acceleration on magnetic properties of chemically deposited Co-P thin films. J Electrochem Soc 128:1686–1691

    Google Scholar 

  112. Shipley CR (1961) Method of electroless deposition on a substrate and catalyst solution therefore, US Patent 3,011,920

  113. Lee CL, Wan CC, Wang YY (2003) Pd nanoparticles as a new activator for electroless copper deposition. J Electrochem Soc 150:125–130

    Google Scholar 

  114. Yang CC, Wang YY, Wan CC (2005) Synthesis and characterization of PVP stabilized Ag/Pd nanoparticles and its potential as an activator for electroless copper deposition. J Electrochem Soc 152:96–100

    Google Scholar 

  115. Lan JL, Wan CC, Wang YY (2008) Mechanistic study of Ag/Pd-PVP nanoparticles and their functions as catalyst for electroless copper depositionnanostructured materials, carbon nanotubes, and fullerenes. J Electrochem Soc 155:77–83

    Google Scholar 

  116. Held TJ, Dryer F (1998) A comprehensive mechanism for methanol oxidation. Int J Chem Kinet 30:805–830

    Google Scholar 

  117. Lichtenberger J, Lee D, Iglesia E (2007) Catalytic oxidation of methanol on Pd metal and oxide clusters at near-ambient temperatures. Phys Chem Chem Phys 9:4902–4906

    Google Scholar 

  118. Wang Y, Sheng ZM, Yang H, Jiang SP, Li CM (2010) Electrocatalysis of carbon black- or activated carbon nanotubes-supported Pd–Ag towards methanol oxidation in alkaline media. Int J Hydrogen Energy 35:10087–10093

    Google Scholar 

  119. Chu YY, Wang ZB, Jiang ZZ, Gu DM, Yin GP (2012) Facile synthesis of hollow spherical sandwich PtPd/C catalyst by electrostatic self-assembly in polyol solution for methanol electrooxidation. J Power Sources 203:17–25

    Google Scholar 

  120. Ye Koval’chuk, Semenyuk Yu, Pereviznyk O, Khodak Yu, Babey P (2013) Catalytic activity of polyaniline-nanoPd composite in metanol electooxidation. Visnyk Lviv Univ 54:296–303

    Google Scholar 

  121. Ren Y, Zhang S, Li H (2014) Electro-oxidation of methanol on SnO2-promoted Pd/MWCNTs catalysts in alkaline solution. Int J Hydrogen Energy 39:288–296

    Google Scholar 

  122. Choi I, Ahn SH, Kim MH, Kwon OJ, Kim JJ (2014) Synthesis of an active and stable Ptshell–Pdcore/C catalyst for the electro-oxidation of methanol. Int J Hydrogen Energy 39:3681–3689

    Google Scholar 

  123. Mizsey P, Newson E, Truong T, Hottinger P (2001) The kinetics of methanol decomposition: a part of autothermal partial oxidation to produce hydrogen for fuel cells. Appl Catal A 213:233–237

    Google Scholar 

  124. Hoffmann J, Schauermann S, Johánek V, Hartmann J, Libuda J (2003) The kinetics of methanol oxidation on a supported Pd model catalyst: molecular beam and TR-IRAS experiments. J Catal 213:176–190

    Google Scholar 

  125. Agrell J, Germani G, Järås SG, Boutonnet M (2003) Production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique. Appl Catal A 242:233–245

    Google Scholar 

  126. Wang M, Guo DJ, Li HL (2005) High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. J Solid State Chem 178:1996–2000

    Google Scholar 

  127. Yuan DS, Xu CW, Liu YL, Tan SZ, Wang X, Wei ZD, Shen PK (2007) Synthesis of coin-like hollow carbon and performance as Pd catalyst support for methanol electrooxidation. Electrochem Commun 9:2473–2478

    Google Scholar 

  128. Serra D, McElwee-White L (2008) Electrochemical oxidation of methanol using alcohol-soluble Ru/Pt and Ru/Pd catalysts. Inorg Chim Acta 361:3237–3246

    Google Scholar 

  129. Sun ZP, Zhang XG, Liu RL, Liang YY, Li HL (2008) A simple approach towards sulfonated multi-walled carbon nanotubes supported by Pd catalysts for methanol electro-oxidation. J Power Sources 185:801–806

    Google Scholar 

  130. Xu MW, Gao GY, Zhou WJ, Zhang KF, Li HL (2008) Novel Pd/β-MnO2 nanotubes composites as catalysts for methanol oxidation in alkaline solution. J Power Sources 175:217–220

    Google Scholar 

  131. Liu Z, Zhang X, Hong L (2009) Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation. Electrochem Commun 11:925–928

    Google Scholar 

  132. Kadirgan F, Beyhan S, Atilan T (2009) Preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation. Int J Hydrogen Energy 34:4312–4320

    Google Scholar 

  133. Singh RN, Singh A (2009) Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: methanol electrooxidation in 1 M KOH. Int J Hydrogen Energy 34:2052–2057

    Google Scholar 

  134. Kim J, Momma T, Osaka T (2009) Cell performance of Pd–Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane. J Power Sources 189:999–1002

    Google Scholar 

  135. Peng F, Zhou C, Wang H, Yu H, Liang J, Yang J (2009) The role of RuO2 in the electrocatalytic oxidation of methanol for direct methanol fuel cell. Catal Commun 10:533–537

    Google Scholar 

  136. Sun ZP, Zhang XG, Liang YY, Li HL (2009) Highly dispersed Pd nanoparticles on covalent functional MWNT surfaces for methanol oxidation in alkaline solution. Electrochem Commun 11:557–561

    Google Scholar 

  137. Wang Y, Wang X, Li CM (2010) Electrocatalysis of Pd-Co supported on carbon black or ball-milled carbon nanotubes towards methanol oxidation in alkaline media. Appl Catal B 99:229–234

    Google Scholar 

  138. Zhao Y, Zhan L, Tian J, Nie S, Ning Z (2010) MnO2 modified multi-walled carbon nanotubes supported Pd nanoparticles for methanol electro-oxidation in alkaline media. Int J Hydrogen Energy 35:10522–10526

    Google Scholar 

  139. Zhao Y, Yang X, Tian J, Wang F, Zhan L (2010) Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media. Int J Hydrogen Energy 35:3249–3257

    Google Scholar 

  140. Zhao Y, Yang X, Tian J, Wang F, Zhan L (2010) Highly dispersed Pd nanoparticles on 2-aminophenoxazin-3-one functionalized MWCNTs surface for methanol electro-oxidation in alkaline media. Mater Sci Eng B 171:109–115

    Google Scholar 

  141. Miao F, Tao B, Sun L, Liu T, You J, Wang L, Chu PK (2010) Preparation and characterization of novel nickel-palladium electrodes supported by silicon microchannel plates for direct methanol fuel cells. J Power Sources 195:146–150

    Google Scholar 

  142. Kannan R, Karunakaran K, Vasanthkumar S (2012) PdNi-coated manganite nanorods as catalyst for electrooxidation of methanol in alkaline medium. Appl Nanosci 2:149–155

    Google Scholar 

  143. Wang H, Wang R, Li H, Wang Q, Kang J, Lei Z (2011) Facile synthesis of carbon-supported pseudo-core@shell PdCu@Pt nanoparticles for direct methanol fuel cells. Int J Hydrogen Energy 36:839–848

    Google Scholar 

  144. Mahapatra SS, Dutta A, Datta J (2011) Temperature dependence on methanol oxidation and product formation on Pt and Pd modified Pt electrodes in alkaline medium. Int J Hydrogen Energy 36:14873–14883

    Google Scholar 

  145. Zhao Y, Zhan L, Tian J, Nie S, Ning Z (2011) Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole–graphene in alkaline medium. Electrochim Acta 56:1967–1972

    Google Scholar 

  146. Alcaide F, Álvarez G, Cabot PL, Grande HJ, Miguel O, Querejeta A (2011) Testing of carbon supported Pd-Pt electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Int J Hydrogen Energy 36:4432–4439

    Google Scholar 

  147. Qi Z, Geng H, Wang X, Zhao C, Ji H, Zhang C, Xu J, Zhang Z (2011) Novel nanocrystalline PdNi alloy catalyst for methanol and ethanol electro-oxidation in alkaline media. J Power Sources 196:5823–5828

    Google Scholar 

  148. Long NV, Duy Hien T, Asaka T, Ohtaki M, Nogami M (2011) Synthesis and characterization of Pt-Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): enhanced electrocatalytic properties of well-shaped core-shell morphologies and nanostructures. Int J Hydrogen Energy 36:8478–8491

    Google Scholar 

  149. Kakati N, Maiti J, Lee SH, Yoon YS (2012) Core shell like behavior of PdMo nanoparticles on multiwall carbon nanotubes and their methanol oxidation activity in alkaline medium. Int J Hydrogen Energy 37:19055–19064

    Google Scholar 

  150. Awasthi R, Singh RN (2012) Optimization of the Pd-Sn-GNS nanocomposite for enhanced electrooxidation of methanol. Int J Hydrogen Energy 37:2103–2110

    Google Scholar 

  151. Park SJ, Bae I, Nam IS, Cho BK, Jung SM, Lee JH (2012) Oxidation of formaldehyde over Pd/Beta catalyst. Chem Eng J 195–196:392–402

    Google Scholar 

  152. Huang Y, Cai J, Guo Y (2012) Roles of Pb and MnOx in PtPb/MnOx-CNTs catalyst for methanol electro-oxidation. Int J Hydrogen Energy 37:1263–1271

    Google Scholar 

  153. Wei W, Chen W (2012) “Naked” Pd nanoparticles supported on carbon nanodots as efficient anode catalysts for methanol oxidation in alkaline fuel cells. J Power Sources 204:85–88

    Google Scholar 

  154. Zhao Y, Nie S, Wang H, Tian J, Ning Z, Li X (2012) Direct synthesis of palladium nanoparticles on Mn3O4 modified multi-walled carbon nanotubes: a highly active catalyst for methanol electro-oxidation in alkaline media. J Power Sources 218:320–330

    Google Scholar 

  155. Tan Q, Du C, Yin G, Zuo P, Cheng X, Chen M (2012) Highly efficient and stable nonplatinum anode catalyst with Au@Pd core-shell nanostructures for methanol electrooxidation. J Catal 295:217–222

    Google Scholar 

  156. Wu YN, Liao SJ, Guo HF, Hao XY (2013) High-performance Pd@PtRu/C catalyst for the anodic oxidation of methanol prepared by decorating Pd/C with a PtRu shell. J Power Sources 224:66–71

    Google Scholar 

  157. Arikan T, Kannan AM, Kadirgan F (2013) Binary Pt–Pd and ternary Pt-Pd-Ru nanoelectrocatalysts for direct methanol fuel cells. Int J Hydrogen Energy 38:2900–2907

    Google Scholar 

  158. Ye KH, Zhou SA, Zhu XC, Xu CW, Shen PK (2013) Stability analysis of oxide (CeO2, NiO, Co3O4 and Mn3O4) effect on Pd/C for methanol oxidation in alkaline medium. Electrochim Acta 90:108–111

    Google Scholar 

  159. Gharibi H, Golmohammadi F, Kheirmand M (2013) Fabrication of MEA based on optimum amount of Co in PdxCo/C alloy nanoparticles as a new cathode for oxygen reduction reaction in passive direct methanol fuel cells. Electrochim Acta 89:212–221

    Google Scholar 

  160. Karim NA, Kamarudin SK (2013) An overview on non-platinum cathode catalysts for direct methanol fuel cell. Appl Energy 103:212–220

    Google Scholar 

  161. Xu C, Cheng L, Shen P, Liu Y (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 9:997–1001

    Google Scholar 

  162. Shen SY, Zhao TS, Wu QX (2012) Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment. Int J Hydrogen Energy 37:575–582

    Google Scholar 

  163. Li N, Zeng YX, Chen S, Xu CW, Shen PK (2014) Ethanol oxidation on Pd/C enhanced by MgO in alkaline medium. Int J Hydrogen Energy 39:16015–16019

    Google Scholar 

  164. Yi Q, Niu F, Sun L (2011) Fabrication of novel porous Pd particles and their electroactivity towards ethanol oxidation in alkaline media. Fuel 90:2617–2623

    Google Scholar 

  165. Xu JB, Zhao TS, Li YS, Yang WW (2010) Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells. Int J Hydrogen Energy 35:9693–9700

    Google Scholar 

  166. Su YZ, Zhang MZ, Liu XB, Li ZY, Zhu XC, Xu CW, Jiang SP (2012) Development of Au promoted Pd/C electrocatalysts for methanol, ethanol and isopropanol oxidation in alkaline medium. Int J Electrochem Sci 7:4158–4170

    Google Scholar 

  167. Wang X, Ma G, Zhu F, Lin N, Tang B, Zhang Z (2013) Preparation and characterization of micro-arc-induced Pd/TM (TM=Ni, Co and Ti) catalysts and comparison of their electrocatalytic activities toward ethanol oxidation. Electrochim Acta 114:500–508

    Google Scholar 

  168. Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M (2009) Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J Power Sources 190:241–251

    Google Scholar 

  169. Hu F, Cui X, Chen W (2010) Ultralong-CNTA-supported Pd-based anodes for ethanol oxidation. J Phys Chem C 114:20284–20289

    Google Scholar 

  170. Shen SY, Zhao TS, Xu JB, Li YS (2010) Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J Power Sources 195:1001–1006

    Google Scholar 

  171. Shen SY, Zhao TS, Xu J, Li Y (2011) High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anion-exchange membrane direct ethanol fuel cells. Energy Environ Sci 4:1428–1433

    Google Scholar 

  172. Shen L, Li H, Lu L, Luo Y, Tang Y, Chen Y, Lu T (2013) Improvement and mechanism of electrocatalytic performance of Pd–Ni/C anodic catalyst in direct formic acid fuel cell. Electrochim Acta 89:497–502

    Google Scholar 

  173. Zeng JQ, Sun SN, Zhong JP, Li XF, Wang RX, Wu LN, Wang L, Fan YJ (2014) Pd nanoparticles supported on copper phthalocyanine functionalized carbon nanotubes for enhanced formic acid electrooxidation. Int J Hydrogen Energy 39:15928–15936

    Google Scholar 

  174. Spiro M, de Jesus DM (2000) Nanoparticle catalysis in microemulsions: oxidation of n, n-dimethyl-p-phenylenediamine by cobalt(III) pentaammine chloride catalyzed by colloidal palladium in water/AOT/n-heptane microemulsions. Langmuir 16:2464–2468

    Google Scholar 

  175. de Jesus DM, Spiro M (2000) Catalysis by palladium nanoparticles in microemulsions. Langmuir 16:4896–4900

    Google Scholar 

  176. Ebitani K, Choi KM, Mizugaki T, Kaneda K (2002) Novel preparation of palladium nanoclusters using metal nitrates and their catalysis for oxidative acetoxylation of toluene in the presence of molecular oxygen. Langmuir 18:1849–1855

    Google Scholar 

  177. Chinthaginjala JK, Villa A, Su DS, Mojet BL, Lefferts L (2012) Nitrite reduction over Pd supported CNFs: metal particle size effect on selectivity. Catal Today 183:119–123

    Google Scholar 

  178. Okube M, Petrykin V, Mueller JE, Fantauzzi D, Krtil P, Jacob T (2014) Topologically sensitive surface segregations of Au-Pd Alloys in electrocatalytic hydrogen evolution. ChemElectroChem 1:207–212

    Google Scholar 

  179. Baldauf M, Kolb DM (1993) A hydrogen adsorption and absorption study with ultrathin Pd overlayers on Au(111) and Au(100). Electrochim Acta 38:2145–2153

    Google Scholar 

  180. Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305

    Google Scholar 

  181. Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Core-protected platinum monolayer shell high-stabilityelectrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49:8602–8607

    Google Scholar 

  182. Sasaki K, Naohara H, Choi Y, Cai Y, Chen WF, Liu P, Adzic RR (2012) Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nature Commun 3:1115–1124

    Google Scholar 

  183. Edwards JK, Solsona B, Ntainjua E, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2009) Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323:1037–1041

    Google Scholar 

  184. Jirkovsky JS, Panas I, Ahlberg E, Halasa M, Romani S, Schiffrin DJ (2011) Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J Am Chem Soc 133:19432–19441

    Google Scholar 

  185. Verdaguer-Casadevall A, Deiana D, Karamad M, Siahrostami S, Malacrida P, Hansen TW, Rossmeisl J, Chorkendorff I, Stephens IEL (2014) Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett 14:1603–1608

    Google Scholar 

  186. Kesavan L, Tiruvalam R, Ab Rahim MH, Bin Saiman MI, Enache DI, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Knight DW, Kiely CJ, Hutchings GJ (2011) Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 331:195–199

    Google Scholar 

  187. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322:932–934

    Google Scholar 

  188. Cawthorn RG (2010) The platinum group element deposits of the Bushveld complex in south Africa. Platin Met Rev 54:205–215

    Google Scholar 

  189. Vesborg PCK, Jaramillo TF (2012) Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv 2:7933–7947

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Saldan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saldan, I., Semenyuk, Y., Marchuk, I. et al. Chemical synthesis and application of palladium nanoparticles. J Mater Sci 50, 2337–2354 (2015). https://doi.org/10.1007/s10853-014-8802-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8802-2

Keywords

Navigation