Skip to main content
Log in

Synergistic effect of expanded graphite, diammonium phosphate and Cloisite 15A on flame retardant properties of EVA and EVA/wax phase-change blends

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of the introduction of expanded graphite (EG), as well as combinations of EG with Cloisite 15A clay and diammonium phosphate (DAP), into EVA and an EVA/wax blend on the thermal stability and flammability of the polymer and blend was investigated. In the presence of EG + Cloisite 15A, the material formed a dense and stable char layer (carbonized ceramic) which significantly improved the flame resistance of the materials, while the presence of EG and EG + DAP much less uniform char layers were formed and the improvement in flame resistance was not so significant. X-ray diffractometry investigations showed intercalation of EVA into the organoclay, which became more effective in the presence of wax. It was, however, found that there was little separation of the EG platelets, although the presence of wax caused a decrease in the sizes of the EG agglomerates. The thermal stability of EVA and the EVA/wax blend improved in the presence of EG and its combination with Cloisite 15A and DAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sharma A, Tyagi VV, Chen CR, Buddhi D (2008) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:318–345. doi:10.1016/rser.2007.10.005

    Article  Google Scholar 

  2. Chigwada G, Jash P, Jiang DD, Wilkie CA (2005) Synergy between nanocomposite formation and low levels of bromine on fire retardancy in polystyrenes. Polym Degrad Stab 88:382–393. doi:10.1016/polymdegradstab.2004.12.002

    Article  Google Scholar 

  3. Finberg I, Yaakov YB, Georlette P (1999) New flame retardant systems for styrenic plastics and method of preparation. Polym Degrad Stab 64:465–470. doi:10.1016/S0141-3910(98)00138-4

    Article  Google Scholar 

  4. Risa ADL, Recca A, Carter JT, McGrail PT (1999) An oxygen index evaluation of flammability on modified epoxy/polyester systems. Polymer 40:4093–4098. doi:10.1016/S0032-3861(98)00646-6

    Article  Google Scholar 

  5. Chen G (2009) In situ thermal condensation of glucose-diammonium phosphate in wood for fire and fungal decay protection. Wood Fiber Sci 41:105–116

    Google Scholar 

  6. Gaan S, Sun G (2007) Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym Degrad Stab 92:968–974. doi:10.1016/polymdegradstab.2007.03.009

    Article  Google Scholar 

  7. Reti C, Casetta M, Duquesne S, Bourbigot S, Delobel R (2008) Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol 19:628–635. doi:10.1002/pat.1130

    Article  Google Scholar 

  8. Schartel B, Braun U, Schwarz U, Reinemann S (2003) Fire retardancy of polypropylene/flax blends. Polymer 44:6241–6250. doi:10.1016/S0032-3861(03)00692-X

    Article  Google Scholar 

  9. Sain M, Park SH, Suhara F, Law S (2004) Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide. Polym Degrad Stab 83:363–367. doi:10.1016/S0141-3910(03)00280-5

    Article  Google Scholar 

  10. Cai Y, Wei Q, Huang F, Lin S, Chen F, Gao W (2009) Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renew Energy 34:2117–2123. doi:10.1016/j.renene.2009.01.017

    Article  Google Scholar 

  11. Cai Y, Wei Q, Huang F, Chen F, Gao W (2008) Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites. Appl Energy 85:765–775. doi:10.1016/j.apenergy.2007.10.017

    Article  Google Scholar 

  12. Gao L, Zheng G, Zhou Y, Hu L, Feng G, Zhang M (2014) Synergistic effect of expandable graphite, diethyl ethylphosphonate and organically-modified layered double hydroxide on flame retardancy and fire behavior of polyisocyanurate-polyurethane foam nanocomposite. Polym Degrad Stab 101:92–101. doi:10.1016/j.polymdegradstab.2013.12.025

    Article  Google Scholar 

  13. Su X, Yi Y, Tao J, Qi H (2012) Synergistic effect of zinc hydroxystannate with intumescent flame-retardants on fire retardancy and thermal behavior of polypropylene. Polym Degrad Stab 97:2128–2135. doi:10.1016/polymdegradstab.2012.08.017

    Article  Google Scholar 

  14. Zhang P, Song L, Lu H, Wang J, Hu Y (2010) The influence of expanded graphite on thermal properties for paraffin/high density polyethylene/chlorinated paraffin/antimony trioxide as a flame retardant phase change material. Energy Convers Manag 51:2733–2737. doi:10.1016/j.enconmann.2010.06.009

    Article  Google Scholar 

  15. Bai G, Guo C, Li L (2014) Synergistic effect of intumescent flame retardant and expandable graphite on mechanical and flame-retardant properties of wood flour-polypropylene composites. Constr Build Mater 50:148–153. doi:10.1016/conbuilmat.2013.09.028

    Article  Google Scholar 

  16. Wu XF, Wang LC, Wu C, Yu JH, Wang GL (2012) Influence of char residues on flammability of EVA/EG, EVA/NG, and EVA/GO composites. Polym Degrad Stab 97:54–63. doi:10.1016/j.polymdegradstab.2011.10.011

    Article  Google Scholar 

  17. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15:31–49. doi:10.1016/S0169-1317(99)00019-8

    Article  Google Scholar 

  18. Fina A, Abbenhuis HCL, Tabuani D, Frache A, Camino G (2006) Polypropylene metal functionalized POSS nanocomposites: a study by thermogravimetric analysis. Polym Degrad Stab 91:1064–1070. doi:10.1016/j.polymdegradstab.2005.07.013

    Article  Google Scholar 

  19. Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K (2004) Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45:4227–4239. doi:10.1016/j.polymer.2004.03.088

    Article  Google Scholar 

  20. Zhang J, Hereid J, Hagen M, Bakirtzis D, Delichatsios MA, Fina A, Castrovinci A, Camino G, Samyn F, Bourbigot S (2009) Effects of nanoclay and fire retardants on fire retardancy of polymer blend of EVA and LDPE. Fire Saf J 44:504–513. doi:10.1016/j.firesaf.2008.10.005

    Article  Google Scholar 

  21. Nyambo C, Kanadare E, Wang D, Wilkie C (2008) Flame-retarded polystyrene: investigating chemical interactions between ammonium polyphosphate and MgAl layered double hydroxide. Polym Degrad Stab 93:1656–1663. doi:10.1016/j.polymdegradstab.2008.05.029

    Article  Google Scholar 

  22. Pack S, Si M, Koo J, Sokolov JC, Koga T, Kashiwagi T, Rafailovich MH (2009) Mode-of-action of self-extinguishing polymer blends containing organoclays. Polym Degrad Stab 94:306–326. doi:10.1016/j.polymdegradstab.2008.12.008

    Article  Google Scholar 

  23. Morgan AB (2006) Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym Adv Technol 17:206–217. doi:10.1002/pat.685

    Article  Google Scholar 

  24. Acosta RL, Valdes SS, Vargas ER, DeValle LFR, Martinez ABE, Fernandez OSR, Ramirez TL, Lafleur PG (2014) Effect of amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay flame-retardant nanocomposites. Mater Chem Phys 146:437–445. doi:10.1016/j.matchemphys.2014.03.050

    Article  Google Scholar 

  25. Liu M, Zhang X, Zammarano M, Gilman JW, Kashiwagi T (2011) Flame retardancy of poly(styrene-co-acrylonitrile) by the synergistic interaction between clay and phosphomolybdate hydrates. Polym Degrad Stab 96:1000–1008. doi:10.1016/j.polymdegradstab.2011.01.015

    Article  Google Scholar 

  26. Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900. doi:10.1016/j.polymdegrads.2009.12.019

    Article  Google Scholar 

  27. Cai Y, Song L, He Q, Yang D, Preparation YHu (2008) thermal and flammability properties of a novel form-stable phase change materials based on high density polyethylene/poly(ethylene-co-vinylacetate)/organophilic montmorillonite nanocomposites/paraffin compounds. Energy Convers Manag 49:2055–2062. doi:10.1016/j.enconman.2008.02.013

    Article  Google Scholar 

  28. Fukushima K, Murariu M, Camino G, Dubois P (2010) Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid). Polym Degrad Stab 95:1063–1076. doi:10.1016/j.polymdegradstab.2010.02.029

    Article  Google Scholar 

  29. Wang L, Zhang L, Tian M (2011) Improved polyvinylpyrrolidone (PVP)/graphite nanocomposites by solution compounding and spray drying. Polym Adv Technol 23:652–659. doi:10.1002/pat.1940

    Article  Google Scholar 

  30. Wang L, Zhang L, Tian M (2012) Effect of expanded graphite (EG) dispersion on the mechanical and tribological properties of nitrile rubber/EG composites. Wear 276–277:85–93. doi:10.1010/j.wear.2011.12.009

    Article  Google Scholar 

  31. Xu X, Ding Y, Qian Z, Wang F, Wen B, Zhou H, Zhang S, Yang M (2009) Degradation of poly(ethylene terephthalate)/clay nanocomposites during melt extrusion: effect of clay catalysis and chain extension. Polym Degrad Stab 94:113–123. doi:10.1016/j.polymdegradstab.2008.09.009

    Article  Google Scholar 

  32. Branca C, Blasi CD (2011) Semi-global mechanisms for the oxidation of diammonium phosphate impregnated wood. J Anal Appl Pyrol 91:97–104. doi:10.1016/j.jaap.2011.01.008

    Article  Google Scholar 

  33. Costache MC, Jiang DD, Wilkie CA (2005) Thermal degradation of ethylene-vinyl acetate copolymer nanocomposites. Polymer 46:6947–6958. doi:10.1016/j.polymer.2005.05.084

    Article  Google Scholar 

  34. Deng CL, Du SL, Zhao J, Shen ZQ, Deng C (2014) An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. Polym Degrad Stab 108:97–107. doi:10.1016/j.polymdegradstab.2014.06.008

    Article  Google Scholar 

  35. Zhang W, He X, Song T, Jiao Q, Jang R (2014) The influence of the phosphorus-based flame retardant on the flame retardancy of the epoxy resins. Polym Degrad Stab 109:209–217. doi:10.1016/j.polymdegradsta.2014.07.023

    Article  Google Scholar 

  36. Lewin M (2011) Flame retarding polymer nanocomposites: synergism, cooperation, antagonism. Polym Degrad Stab 96:256–269. doi:10.1016/j.polymdegradstab.2010.12.006

    Article  Google Scholar 

  37. Shao ZB, Deng C, Tan Y, Chen MJ, Chen L, Wang YZ (2014) Flame retardation of polypropylene via a novel intumescent flame retardant: ethylenediamine-modified ammonium polyphosphate. Polym Degrad Stab 106:88–96. doi:10.1016/j.polymdegradstab.2013.10.005

    Article  Google Scholar 

Download references

Acknowledgements

The National Research Foundation of South Africa is acknowledged for financial support of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Luyt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochane, M.J., Luyt, A.S. Synergistic effect of expanded graphite, diammonium phosphate and Cloisite 15A on flame retardant properties of EVA and EVA/wax phase-change blends. J Mater Sci 50, 3485–3494 (2015). https://doi.org/10.1007/s10853-015-8909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8909-0

Keywords

Navigation