Skip to main content
Log in

Photocatalytic activity of electrophoretically deposited (EPD) TiO2 coatings

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper describes the application of electrophoretic deposition for air pollution removal using anatase as a photoactive coating. In this study, the anatase form of TiO2 has been applied to (1) fluorine-doped tin oxide (FTO)-coated glass; (2) 304L stainless steel; and (3) titanium substrates using isopropanol and acetylacetone-based solutions at 20, 40, 60 and 80 V. In order to increase the strength of the substrate–anatase interface without transforming the phase into rutile, samples were calcined at 450 °C for 2 h. The resulting coatings were characterised by Raman spectroscopy, X-ray diffraction, non-contact optical profilometry and scanning electron microscopy. The photocatalytic activity of the deposited coatings were evaluated in the gas phase for nitrogen dioxide (NO2) removal by electron ionisation mass spectrometry, whilst irradiated by light of wavelength 376–387 nm for 100 min. Anatase phase titania supported on a FTO-coated glass substrate showed the highest photoactivity for NO2 remediation. This was attributed to the formation of a three-dimensional nanostructure with properties determined by the deposition conditions. This work provides routes for the development of low-cost and large area photoactive coatings for pollution control.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a.m.u.:

Atomic mass unit

FTO:

Fluorine doped tin oxide

CH4 :

Methane

NOx :

Nitrogen oxide

UVA:

Ultraviolet-A

References

  1. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change

  2. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe

  3. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  Google Scholar 

  4. García APH, Suib SL (2013) Solar photocatalysis for environment remediation, In new and future developments in catalysis. Elsevier, Amsterdam

    Google Scholar 

  5. Fujishima AZ (2006) Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chim. 9(5–6):750–760

    Article  Google Scholar 

  6. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1(1):1–21

    Article  Google Scholar 

  7. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177

    Article  Google Scholar 

  8. Tryk DA, Fujishima A, Honda K (2000) Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim Acta 45(15–16):2363–2376

    Article  Google Scholar 

  9. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  Google Scholar 

  10. Heller A (1995) Chemistry and applications of photocatalytic oxidation of thin organic films. Acc Chem Res 28(12):503–508

    Article  Google Scholar 

  11. Serratos M, Bronson A (1996) The effect of oxygen partial pressure on the stability of Magneli phases in high temperature corrosive wear. Wear 198(1–2):267–270

    Article  Google Scholar 

  12. Kavan L, Gratzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical Investigation of single-crystal anatase. J Am Chem Soc 118(28):6716–6723

    Article  Google Scholar 

  13. Asahi R, Taga Y, Mannstadt W, Freeman AJ (2000) Electronic and optical properties of anatase TiO2. Phys Rev B 61(11):7459–7465

    Article  Google Scholar 

  14. Egerton TA, Mattinson JA (2008) The influence of platinum on UV and ‘visible’ photocatalysis by rutile and Degussa P25. J Photochem Photobiol A Chem 194(2–3):283–289

    Article  Google Scholar 

  15. Oh W-C, Zhang F-J, Chen M-L (2010) Characterization and photodegradation characteristics of organic dye for Pt–titania combined multi-walled carbon nanotube composite catalysts. J Ind Eng Chem 16(2):321–326

    Article  Google Scholar 

  16. Tseng YH, Kuo CH (2011) Photocatalytic degradation of dye and NO(x) using visible-light-responsive carbon-containing TiO2. Catal Today 174(1):114–120

    Article  Google Scholar 

  17. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90(14):2011–2075

    Article  Google Scholar 

  18. Sampaio MJ, Silva CG, Marques RRN, Silva AMT, Faria JL (2011) Carbon nanotube–TiO2 thin films for photocatalytic applications. Catal Today 161(1):91–96

    Article  Google Scholar 

  19. Ohno T, Tsubota T, Nishijima K, Miyamoto Z (2004) Degradation of methylene blue on carbonate species-doped TiO2 photocatalysts under visible light. Chem Lett 33(6):750–751

    Article  Google Scholar 

  20. Lin CY, Fang YK, Kuo CH, Chen SF, Lin C-S, Chou TH, Lee Y-H, Lin J-C, Hwang S-B (2006) Design and fabrication of a TiO2/nano-silicon composite visible light photocatalyst. Appl Surf Sci 253(2):898–903

    Article  Google Scholar 

  21. Zhu J, Ren J, Huo YN, Bian ZF, Li HX (2007) Nanocrystalline Fe/TiO2 visible photocatalyst with a mesoporous structure prepared via a nonhydrolytic sol-gel route. J Phys Chem C 111(51):18965–18969

    Article  Google Scholar 

  22. Zhang F, Chen M, Oh W (2010) Photoelectrocatalytic properties of Ag-CNT/TiO2 composite electrodes for methylene blue degradation. New Carbon Mater 25(5):348–356

    Article  Google Scholar 

  23. Alonso E, Montequi I, Cocero MJ (2009) Effect of synthesis conditions on photocatalytic activity of TiO2 powders synthesized in supercritical CO2. J Supercrit Fluids 49(2):233–238

    Article  Google Scholar 

  24. Mills A, Hill C, Robertson PKJ (2012) Overview of the current ISO tests for photocatalytic materials. J Photochem Photobiol A Chem 237:7–23

    Article  Google Scholar 

  25. Nuño M, Ball RJ, Bowen CR (2014) Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry. J Mass Spectrom 49(8):716–726

    Article  Google Scholar 

  26. Tryba B, Homa P, Wróbel RJ, Morawski AW (2014) Photocatalytic decomposition of benzo-[a]-pyrene on the surface of acrylic, latex and mineral paints. Influence of paint composition. J Photochem Photobiol A Chem 286:10–15

    Article  Google Scholar 

  27. Maggos T, Bartzis JG, Liakou M, Gobin C (2007) Photocatalytic degradation of NOx gases using TiO2-containing paint: a real scale study. J Hazard Mater 146(3):668–673

    Article  Google Scholar 

  28. Geng Q-J, Wang X-K, Tang S-F (2008) Heterogeneous photocatalytic degradation kinetic of gaseous ammonia over nano-TiO2 supported on latex paint film. Biomed Environ Sci 21(2):118–123

    Article  Google Scholar 

  29. Hochmannova L, Vytrasova J (2010) Photocatalytic and antimicrobial effects of interior paints. Prog Org Coat 67(1):1–5

    Article  Google Scholar 

  30. Kolarik J, Toftum J (2012) The impact of a photocatalytic paint on indoor air pollutants: sensory assessments. Build Environ 57:396–402

    Article  Google Scholar 

  31. Baudys M, Krýsa J, Zlámal M, Mills A (2015) Weathering tests of photocatalytic facade paints containing ZnO and TiO2. Chem Eng J 261:83–87

    Article  Google Scholar 

  32. Yoshida K, Matsukawa K, Yano T (2009) Microstructure and mechanical properties of silicon carbide fiber-reinforced silicon carbide composite fabricated by electrophoretic deposition and hot-pressing. J Nucl Mater 386–388:643–646

    Article  Google Scholar 

  33. Corni I, Ryan MP, Boccaccini AR (2008) Electrophoretic deposition: from traditional ceramics to nanotechnology. J Eur Ceram Soc 28(7):1353–1367

    Article  Google Scholar 

  34. Boccaccini AR, Zhitomirsky I (2002) Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr Opin Solid State Mater Sci 6(3):251–260

    Article  Google Scholar 

  35. Wu M-S, Chan D-S, Lin K-H, Jow J-J (2011) A simple route to electrophoretic deposition of transition metal-coated nickel oxide films for electrochemical capacitors. Mater Chem Phys 130(3):1239–1245

    Article  Google Scholar 

  36. Tada K, Onoda M (2009) Electrophoretic deposition of conjugated polymer: deposition from dilute solution and PEDOT coating effect. Synth Met 159(9–10):851–853

    Article  Google Scholar 

  37. Van der Biest OO, Vandeperre LJ (1999) Electrophoretic deposition of materials. Annu Rev Mater Sci 29(1):327–352

    Article  Google Scholar 

  38. Kaya C, Kaya F, Su B, Thomas B, Boccaccini AR (2005) Structural and functional thick ceramic coatings by electrophoretic deposition. Surf Coat Technol 191(2–3):303–310

    Article  Google Scholar 

  39. Firouzdor V, Brechtl J, Hauch B, Sridharan K, Allen TR (2013) Electrophoretic deposition of diffusion barrier titanium oxide coatings for nuclear reactor cladding applications. Appl Surf Sci 282:798–808

    Article  Google Scholar 

  40. Farrokhi-Rad M, Ghorbani M (2011) Electrophoretic Deposition of Titania Nanoparticles in Different Alcohols: kinetics of Deposition. J Am Ceram Soc 94(8):2354–2361

    Article  Google Scholar 

  41. Shan W (2004) Electrophoretic deposition of nanosized zeolites in non-aqueous medium and its application in fabricating thin zeolite membranes. Microporous Mesoporous Mater 69(1–2):35–42

    Article  Google Scholar 

  42. Fateminia SMA, Yazdani-Rad R, Ebadzadeh T, Ghashghai S (2011) Effect of dispersing media on microstructure of electrophoretically deposited TiO2 nanoparticles in dye-sensitized solar cells. Appl Surf Sci 257(20):8500–8505

    Article  Google Scholar 

  43. Tabellion J, Clasen R (2004) Electrophoretic deposition from aqueous suspensions for near-shape manufacturing of advanced ceramics and glasses—applications. J Mater Sci 39(3):803–811. doi:10.1023/B:JMSC.0000012907.52051.fb

    Article  Google Scholar 

  44. Gurrappa I, Binder L (2008) Electrodeposition of nanostructured coatings and their characterization—a review. Sci Technol Adv Mater 9(4):43001

    Article  Google Scholar 

  45. Grinis L, Dor S, Ofir A, Zaban A (2008) Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells. J Photochem Photobiol A Chem 198(1):52–59

    Article  Google Scholar 

  46. Zhang F-J, Chen M-L, Oh W-C (2011) Photoelectrocatalytic properties and bactericidal activities of silver-treated carbon nanotube/titania composites. Compos Sci Technol 71(5):658–665

    Article  Google Scholar 

  47. Kim G-S, Seo H-K, Godble VP, Kim Y-S, Yang O-B, Shin H-S (2006) Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles: application to dye-sensitized solar cells. Electrochem Commun 8(6):961–966

    Article  Google Scholar 

  48. Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I (2010) Electrophoretic deposition of biomaterials. J R Soc Interface 7(Suppl 5):S581–S613

    Article  Google Scholar 

  49. Farnoush H, Mohandesi JA, Fatmehsari DH (2013) Effect of particle size on the electrophoretic deposition of hydroxyapatite coatings: a kinetic study based on a statistical analysis. Int J Appl Ceram Technol 10(1):87–96

    Article  Google Scholar 

  50. Mohanty G, Besra L, Bhattacharjee S, Singh BP (2008) Optimization of electrophoretic deposition of alumina onto steel substrates from its suspension in iso-propanol using statistical design of experiments. Mater Res Bull 43(7):1814–1828

    Article  Google Scholar 

  51. Wong EM and Searson PC (1999) ZnO quantum particle thin films fabricated by electrophoretic deposition. Appl Phys Lett 74(20)

  52. Hara Y, Brownson JRS, Anderson MA (2012) Fabrication of thin-films composed of ZnO nanorods using electrophoretic deposition. Int J Appl Ceram Technol 9(1):115–123

    Article  Google Scholar 

  53. Nie X, Leyland A, Matthews A (2000) Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf Coat Technol 125(1–3):407–414

    Article  Google Scholar 

  54. Ayieko CO, Musembi RJ, Waita SM, Aduda BO, Jain PK (2012) Structural and optical characterization of nitrogen-doped TiO2 thin films deposited by spray pyrolysis on fluorine doped tin oxide (FTO) coated glass slides. Int J Energy Eng 2(3):67–72

    Article  Google Scholar 

  55. Peng S, Cheng F, Liang J, Tao Z, Chen J (2009) Facile solution-controlled growth of CuInS2 thin films on FTO and TiO2/FTO glass substrates for photovoltaic application. J Alloys Compd 481(1–2):786–791

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the University of Bath research studentship and instrumentation funding from the Royal Society, Research grant RG110024. Thanks are also due to Professor W. N. Wang (University of Bath) for supplying the LEDs and Dr. Subhayan Biswas from LMNIIT Jaipur (India) for providing electrophoretic coating facilities. In addition, the authors wish to acknowledge the help of Guy Tolley and Keyence for images taken on the VHX-5000 Digital optical microscope. Thanks are also due to the UK India Education and Research Initiative (UKIERI-II) coordinated by the British Council, New Delhi, India, for financial support through a thematic partnership.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Ball.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuño, M., Ball, R.J., Bowen, C.R. et al. Photocatalytic activity of electrophoretically deposited (EPD) TiO2 coatings. J Mater Sci 50, 4822–4835 (2015). https://doi.org/10.1007/s10853-015-9022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9022-0

Keywords

Navigation