Skip to main content
Log in

Structural, optoelectronic, and thermodynamic properties of Y\(_x\)Al\(_{1-x}\)N semiconducting alloys

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structural, electronic, optical, and thermodynamic properties of Y\(_x\)Al\(_{1-x}\)N alloys were computed using first-principles calculations. The effects of exchange and correlation have been considered by means of the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof parametrization. In addition, the Tran–Blaha-modified Becke–Johnson potential (TB-mBJ) was applied to give a better description of the band-gap energies and optical spectra. The lattice parameters, bulk modulus, and band-gap energy show nonlinear dependence on concentration x. Results for rock-salt Y\(_x\)Al\(_{1-x}\)N alloys show that the band gap undergoes an indirect (\(\Gamma \rightarrow X\))-to-direct (\(\Gamma \rightarrow \Gamma \)) transition at a given yttrium composition, followed by a direct (\(\Gamma \rightarrow \Gamma \))-to-indirect (\(\Gamma \rightarrow X\)) transition in a higher yttrium concentration. For wurtzite Y\(_x\)Al\(_{1-x}\)N alloys, the band gap presents a direct (\(\Gamma \rightarrow \Gamma \))-to-indirect (\(M\rightarrow \Gamma \)) transition at a given yttrium composition, followed by an indirect (\(M\rightarrow \Gamma \))-to-indirect (\(M\rightarrow \Sigma \)) transition in a higher yttrium concentration. The real dielectric function, imaginary dielectric function, refractive index, and extinction coefficient were calculated using the TB-mBJ potential. Using a regular solution model, slightly lower mixing enthalpies for wurtzite Y\(_x\)Al\(_{1-x}\)N alloys were found. The mixing enthalpy for a given concentration differs depending on structures, and on the interaction between atoms of constituents. The effect of temperature on the volume, bulk modulus, Debye temperature, and the heat capacity for Y\(_x\)Al\(_{1-x}\)N alloys was analyzed using the quasi-harmonic Debye model. Results show that the heat capacity is fairly sensitive to composition as temperature increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) Review: Band parameters for IIIV compound semiconductors and their alloys. J Appl Phys 89:5815–5875

    Article  Google Scholar 

  2. Adachi S (2009) Properties of semiconductor alloys: group-IV, IIIV and IIVI semiconductors., Wiley series in materials for electronic and optoelectronic applicationsWiley, West Sussex

    Book  Google Scholar 

  3. Glen A, Slack RA, Tanzilli R, Pohl O, Vandersande JW (1987) The intrinsic thermal conductivity of AIN. J Phys Chem Solids 48:641–647

    Article  Google Scholar 

  4. Virkar AV, Jackson TB, Cutler RA (1989) Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride. J Am Ceram Soc 72:2031–2042

    Article  Google Scholar 

  5. Shaffer PTB, Mroz TJ (1991) Aluminum Nitride. Advanced Refractory Technology Inc, Buffalo

    Google Scholar 

  6. Mroz TJ (1992) Annual materials review: aluminum nitride. Am Ceram Soc Bull 71:782–786

    Google Scholar 

  7. Weimer AW, Cochran GA, Eisman GA, Henley JP, Hook BD, Mills LK, Guiton TA, Knudsen AK, Nicholas NR, Volmering JE, Moor WG (1994) Rapid process for manufacturing Aluminum Nitride powder. J Am Ceram Soc 77:3–18

    Article  Google Scholar 

  8. Vollstadt H, Ito E, Akaishi M, Akimoto S, Fukunaga O (1990) High pressure synthesis of rock salt type of AlN. Proc Jpn Acad B 66:7–9

    Article  Google Scholar 

  9. Du L, Edgar JH, Peascoe-Meisner R, Gong Y, Bakalova S, Kuball M (2010) Sublimation crystal growth of yttrium nitride. J Cryst Growth 312:2896–2903

    Article  Google Scholar 

  10. Zoita CN, Braic M, Braic V (2011) Structural, optical and electronic properties of In\(_{1-x}\)Y\(_x\)N thin films. Dig J Nanomater Biostruct 6:1877–1886

    Google Scholar 

  11. Henkes AE, Vasquez Y, Schaak RE (2007) Converting metals into phosphides: a general strategy for the synthesis of metal phosphide nanocrystals. J Am Chem Soc 129:1896–1897

    Article  Google Scholar 

  12. Iga K, Kinoshita S (1996) Process technology for semiconductor lasers. Crystal Growth and Microprocesses, vol 30., Springer Series in Materials ScienceSpringer, Berlin

    Book  Google Scholar 

  13. Quillec M (1996) Materials for optoelectronics. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  14. Mishra UK, Singh J (2008) Semiconductor device physics and design. Springer, Netherlands

    Google Scholar 

  15. Guisbiers G, Wautelet M, Buchaillot L (2009) Phase diagrams and optical properties of phosphide, arsenide, and antimonide binary and ternary III-V nanoalloys. Phys Rev B 79:155426(1)–155426(8)

    Article  Google Scholar 

  16. Kuykendall T, Ulrich P, Aloni S, Yang P (2007) Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat Mater 6:951–956

    Article  Google Scholar 

  17. Lu Ch-H, Li Y-Ch, Chen Y-H, Tsai S-Ch, Lai Y-L, Li Y-L, Liu Ch-P (2013) Output power enhancement of InGaN/GaN based green light-emitting diodes with high-density ultra-small In-rich quantum dots. J Alloys Compd 555:250–254

    Article  Google Scholar 

  18. Zhang CS, Yan MF, You Y, Chen HT, Zhang FY, Bai B, Chen L, Long Z, Li RW (2014) Stability and properties of alloyed \(\varepsilon \)-(Fe\(_{1-x}\)M\(_x\))3N nitrides (M = Cr, Ni, Mo, V Co, Nb, Mn, Ti and Cu): A first-principles calculations. J Alloys Compd 615:854–862

    Article  Google Scholar 

  19. Zukauskaite A, Wingqvist G, Palisaitis J, Jensen J, Persson PO, Matloub R, Muralt P, Kim Y, Birch J, Hultman L (2012) Microstructure and dielectric properties of piezoelectric magnetron sputtered w-Sc\(_x\)N thin films. J Appl Phys 111:093527(1)–093527(7)

    Article  Google Scholar 

  20. Ding XZ, Zeng XT (2005) Structural mechanical and tribological properties of CrAlN coatings deposited by reactive unbalanced magnetron sputtering. Surf Coat Technol 200:1372–1376

    Article  Google Scholar 

  21. Alling B, Marten T, Abrikosov IA, Karimi A (2007) Comparison of thermodynamic properties of cubic Cr\(_{1-x}\)N from first-principles calculations. J Appl Phys 102:044314(1)–044314(8)

    Article  Google Scholar 

  22. Alling B, Ruban AV, Karimi A, Peil OE, Simak SI, Hultman L, Abrikosov IA (2007) Mixing and decomposition thermodynamics of c-Ti\(_{1-x}\)N from first-principles calculations. Phys Rev B 75:045123(1)–045123(13)

    Article  Google Scholar 

  23. Mayrhofer PH, Sonnleitner D, Bartosik M, Holec D (2014) Structural and mechanical evolution of reactively and non-reactively sputtered ZrAlN thin films during annealing. Surf Coat Technol 244:52–56

    Article  Google Scholar 

  24. Žukauskaitė A, Tholander CH, Palisaitis J, Persson P, Darakchieva V, Sedrine NB, Tasnádi F, Alling B, Birch J, Hultman L (2012) Y\(_x\)N thin films. J Phys D Appl Phys 45:422001(1)–422001(5)

    Google Scholar 

  25. Sedrine NB, Zukauskaite A, Birch J, Hultman L, Darakchieva V (2013) Bandgap engineering and optical constants of Y\(_x\)N alloys. Jpn J Appl Phys 52:08JM02(1)–08JM02(3)

    Article  Google Scholar 

  26. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  27. Kohn W, Sham LJ (1965) Self-Consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  28. Zunger A, Wei SH, Ferreira LG, Bernard JE (1990) Special quasirandom structures. Phys Rev Lett 65:353–356

    Article  Google Scholar 

  29. Rashid M, Noor NA, Sabir B, Ali S, Sajjad M, Hussain F, Khan NU, Amin B, Khenata R (2014) Ab-initio study of fundamental properties of ternary ZnO\(_{1-x}\)S\(_x\) alloys by using special quasi-random structures. Comp Mater Sci 91:285–291

    Article  Google Scholar 

  30. Dong L, Alpay SP (2011) Theoretical analysis of the crystal structure, band-gap energy, polarization, and piezoelectric properties of ZnO-BeO solid solutions. Phys Rev B 84:035315(1)–035315(8)

    Google Scholar 

  31. Dong L, Alpay SP (2012) Polarization, piezoelectric properties, and elastic coefficients of In\(_x\)N solid solutions from first principles. J Mater Sci 47:75877593

    Google Scholar 

  32. Vegard L (1921) Die Konstitution der Mischkristalle und die Raumfllung der Atome. Z Phys 5:17–26

    Article  Google Scholar 

  33. Denton AR, Ashcroft NW (1991) Vegards law. Phys Rev A 43:3161–3164

    Article  Google Scholar 

  34. Jobst B, Hommel D, Lunz U, Gerhard T, Landwehr G (1996) \(E_0\) band-gap energy and lattice constant of ternary Zn\(_{1-x}\)Mg\(_x\)Se as functions of composition. Appl Phys Lett 69:97–99

    Article  Google Scholar 

  35. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k an augmented plane wave plus local orbital program for calculating crystal properties. Vienna University of Technology, Vienna

    Google Scholar 

  36. Perdew JP, Burke K, Emzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  37. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102:226401(1)–226401(4)

    Google Scholar 

  38. Araujo RB, de Almeida JS, Ferreira da Silva A (2013) Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential. J Appl Phys 114:183702(1)–183702(6)

    Article  Google Scholar 

  39. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 30(9):244–247

    Article  Google Scholar 

  40. Yu PY, Cardona M (2010) Fundamental of semiconductors: physics and materials properties, 4th edn. Springer, Berlin

    Book  Google Scholar 

  41. Otero-de-la-Roza A, Luaña V (2011) Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data. Comput Phys Commun 182:1708–1720

  42. Otero-de-la-Roza A, Lua\(\tilde{n}\)a V (2011) Equations of state and thermodynamics of solids using empirical corrections in the quasiharmonic approximation. Phys Rev B 84:184103(1)–184103(20)

  43. Pankovc JI (1971) Optical processes in semiconductors. Solid state physical electronics series. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  44. Penn DR (1962) Wave-number-dependent dielectric function of semiconductors. Phys Rev 128:2093–2097

    Article  Google Scholar 

  45. Mubarak AA (2014) Ab initio study of the structural, electronic and optical properties of the fluoropervskite SrXF\(_3\) Li, Na, K and Rb) compounds. Comp Mater Sci 81:478–482

    Article  Google Scholar 

  46. Li D, Zhang X, Zhu Z, Zhang H (2011) First-principles calculation of structural, electronic, and optical properties of zinc-blende Al\(_x\)Ga\(_{1-x}\)N alloys. Sol Sta Sci 13:1731–1734

    Article  Google Scholar 

  47. Othman M, Kasap E, Korozlu N (2010) The structural, electronic and optical properties of In\(_x\)P alloys. Phys B 405:23572361

    Article  Google Scholar 

  48. Swalin RA (1972) Thermodynamics of solids, 2nd edn. Wiley, New York

    Google Scholar 

  49. López-Pérez W, Simon-Olivera N, González-Hernández R (2013) Theoretical prediction of structural parameters, band-gap energies, and mixing enthalpies of Sc\(_{1-x}\)In\(_x\)As alloys. J Mater Sci 48:4899–4907

    Article  Google Scholar 

  50. Phillips JM (1995) Substrate selection for thin-film growth. MRS Bull 20:35–39

    Article  Google Scholar 

  51. Khare N (2005) Handbook of High-Temperature Superconductor Electronics. Marcel Deker Inc, New York

    Google Scholar 

  52. Höglund C, Birch J, Alling B, Bareño J, Czigány Z, Persson PO, Wingqvist G, Zukauskaite A, Hultman L (2010) Wurtzite structure Sc\(_{1-x}\)N solid solution films grown by reactive magnetron sputter epitaxy: structural characterization and first-principles calculations. J Appl Phys 107:123515(1)–123515(7)

    Article  Google Scholar 

  53. Höglund C, Bareño J, Birch J, Alling B, Czigány Z, Hultman L (2009) Cubic Sc\(_{1-x}\)N solid solution thin films deposited by reactive magnetron sputter epitaxy onto ScN(111). J Appl Phys 105:113517(1)–113517(7)

    Article  Google Scholar 

  54. Alling B, Odn M, Hultman L, Abrikosov IA (2009) Pressure enhancement of the isostructural cubic decomposition in Ti\(_{1-x}\)N. Appl Phys Lett 95:181906(1)–181906(3)

    Article  Google Scholar 

  55. Haddou A, Khachai H, Khenata R, Litimein F, Bouhemadou A, Murtaza G, Alahmed Z, Bin-Omran S, Abbar B (2013) Elastic, optoelectronic, and thermal properties of cubic CSi\(_2\)N\(_4\): an ab initio study. J Mater Sci 48:8235–8243

    Article  Google Scholar 

  56. Hacini K, Ghemid S, Meradji H, El Haj Hassan F (2011) Theoretical study of structural, electronic and thermal properties of Zn\(_{1-x}\)Be\(_x\)S ternary alloy. Comp Mat Sci 50:3080–3084

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out with the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under “Convocatoria 658 - Convocatoria para proyectos de investigación en ciencias básicas año 2014.” The calculations reported in this paper were performed using the machines of the computational laboratory at the Universidad del Norte. The authors thank DIDI office for their useful management in the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William López-Pérez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Montes, L., López-Pérez, W., González-García, A. et al. Structural, optoelectronic, and thermodynamic properties of Y\(_x\)Al\(_{1-x}\)N semiconducting alloys. J Mater Sci 51, 2817–2829 (2016). https://doi.org/10.1007/s10853-015-9590-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9590-z

Keywords

Navigation