Skip to main content
Log in

PVP-modulated synthesis of NaV6O15 nanorods as cathode materials for high-capacity sodium-ion batteries

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly uniform NaV6O15 nanorods were obtained via a facile and low-cost PVP-modulated hydrothermal process. It is largely accepted that such a unique feature is favorable for rapid diffusion for sodium ions according to the intrinsic crystal structure. As the cathode, the as-prepared NaV6O15 nanorods are capable of delivering a high initial capacity of approximately 157 mA h g−1 at 20 mA g−1 for potentials ranging from 1.5 to 3.8 V and yielding 121 mA h g−1 at a high current density of 200 mA g−1. EIS analysis results demonstrated that the diffusion coefficients D Na as high as 2.71 × 10−12 cm2 s−1 at room temperature. In addition, it could be clearly observed that the NaV6O15 exhibited metallic behavior from the electron density of states, providing excellent electron conductivity. All these results suggest that NaV6O15 nanorods can be a very promising cathode for sodium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kisuk K, Ying Shirley M, Julien B, Grey CP, Gerbrand C (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Cheminform 311(5763):977–980

    Google Scholar 

  2. Armand M, Tarascon J-M (2005) Building better batteries. Ind Laser Solut 451(7179):652–657

    Google Scholar 

  3. Luo C, Zhu Y, Wen Y, Wang J, Wang C (2014) Carbonized polyacrylonitrile-stabilized SeSx cathodes for long cycle life and high power density lithium ion batteries. Adv Funct Mater 24(26):4082–4089

    Article  Google Scholar 

  4. Zhang L, Xiang H, Zhu X, Yang W, Wang H (2011) Synthesis of LiFePO4/C composite as a cathode material for lithium-ion battery by a novel two-step method. J Mater Sci 47(7):3076–3081. doi:10.1007/s10853-011-6139-7

    Article  Google Scholar 

  5. Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C (2014) An advanced MoS2/carbon anode for high-performance sodium-ion batteries. Small 11(4):473–481

    Article  Google Scholar 

  6. Liu H, Zhou H, Chen L, Tang Z, Yang W (2011) Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries. J Power Sources 196(2):814–819

    Article  Google Scholar 

  7. Deng Q, Wang L, Li J (2015) Electrochemical characterization of Co3O4/MCNTs composite anode materials for sodium-ion batteries. J Mater Sci 50(11):4142–4148. doi:10.1007/s10853-015-8975-3

    Article  Google Scholar 

  8. Blesa MC, Moran E, León C, Santamaria J, Tornero JD, Menéndez N (1999) α-NaFeO2: ionic conductivity and sodium extraction. Solid State Ion 126(1–2):81–87

    Article  Google Scholar 

  9. Yuliang C, Lifen X, Wei W, Daiwon C, Zimin N, Jianguo Y, Saraf LV, Zhenguo Y, Jun L (2011) Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23(28):3155–3160

    Article  Google Scholar 

  10. Braconnier JJ, Delmas C, Hagenmuller P (1982) Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2. Mater Res Bull 17(8):993–1000

    Article  Google Scholar 

  11. Delmas C, Braconnier JJ, Fouassier C, Hagenmuller P (1981) Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion 3–4:165–169

    Article  Google Scholar 

  12. Yamauchi T, Ueda Y (2008) Superconducting β (β′) -vanadium bronzes under pressure. Phys Rev B Condens Matt 77(10):104529(1)–104529(18)

    Article  Google Scholar 

  13. Patridge CJ, Tai-Lung W, Sambandamurthy G, Sarbajit B (2011) Colossal above-room-temperature metal—insulator switching of a Wadsley-type tunnel bronze. Chem Commun 47(15):4484–4486

    Article  Google Scholar 

  14. Suzuki T, Yamauchi I, Shimizu Y, Itoh M, Takeshita N, Terakura C, Takagi H, Tokura Y, Yamauchi T, Ueda Y (2009) High-pressure 51 V NMR study of the magnetic phase diagram and metal-insulator transition in quasi-one-dimensional β-Na0.33V2O5. Phys Rev B Condens Matt 79(8):081101(1)–081101(4)

    Google Scholar 

  15. Wadsley AD (1955) The crystal structure of KAsF6. Acta Crystallogr 8(11):739–739

    Article  Google Scholar 

  16. He H, Zeng X, Wang H, Chen N, Sun D, Tang Y, Huang X, Pan Y (2014) NaV6O15 nanoflakes with good cycling stability as a cathode for sodium ion battery. J Electrochem Soc 162(1):A39–A43

    Article  Google Scholar 

  17. Bach S, Baffier N, Pereira-Ramos JP, Messina R (1989) Electrochemical sodium intercalation in Na0.33V2O5 bronze synthesized by a sol-gel process. Solid State Ion 37(1):41–49

    Article  Google Scholar 

  18. West K, Zachau-Christiansen B, Jacobsen T, Skaarup S (1988) Sodium insertion in vanadium oxides. Solid State Ion 28–30(3):1128–1131

    Article  Google Scholar 

  19. Pereira-Ramos JP, Messina R, Bach S, Baffier N (1990) Influence of the synthesis via a sol-gel process on the electrochemical lithium and sodium insertion in β-Na0.33V2O5. Solid State Ion 40–41:970–973

    Article  Google Scholar 

  20. Jiang D, Wang H, Li G, Lan X, Abib MH, Zhang Z, Jiang Y (2015) Self-combustion synthesis and ion diffusion performance of NaV6O15 nanoplates as cathode materials for sodium-ion batteries. J Electrochem Soc 162(4):A697–A703

    Article  Google Scholar 

  21. Wang H, Wang X, Wang L, Wang J, Jiang D, Li G, Zhang Y, Zhong H, Jiang Y (2015) Phase transition mechanism and electrochemical properties of nanocrystalline MoSe2 as anode materials for the high performance lithium-ion battery. J Phys Chem C 119(19):10197–10205

    Article  Google Scholar 

  22. Wu X, Zhao Y, Yang C, He G (2015) PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries. J Mater Sci 50(12):4250–4257

    Article  Google Scholar 

  23. Xiao W, Wang Z, Guo H, Zhang Y, Zhang Q, Gan L (2013) A facile PVP-assisted hydrothermal fabrication of Fe2O3/Graphene composite as high performance anode material for lithium ion batteries. J Alloy Compd 560(3):208–214

    Article  Google Scholar 

  24. Huang G, Wei L, Sun H, Wang J, Zhang J, Jiang H, Fei Z (2013) Polyvinylpyrrolidone (PVP) assisted synthesized nano-LiFePO4/C composite with enhanced low temperature performance. Electrochim Acta 97(5):92–98

    Article  Google Scholar 

  25. Zhang H, Ren X, Cui Z (2007) Shape-controlled synthesis of Cu2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers. J Cryst Growth 304(1):206–210

    Article  Google Scholar 

  26. Deivaraj TC, Lala NL, Jy L (2005) Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods. J Colloid Interface Sci 289(2):402–409

    Article  Google Scholar 

  27. Park J, Kim JS, Park JW, Nam TH, Kim KW, Ahn JH, Wang G, Ahn HJ (2013) Discharge mechanism of MoS2 for sodium ion battery: electrochemical measurements and characterization. Electrochim Acta 92(1):427–432

    Article  Google Scholar 

  28. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  Google Scholar 

  30. Song W, Ji X, Wu Z, Zhu Y, Yang Y, Chen J, Jing M, Li F, Banks CE (2014) First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J Mater Chem 2(15):5358–5362

    Article  Google Scholar 

  31. Baddour-Hadjean R, Bach S, Emery N, Pereira-Ramos JP (2011) The peculiar structural behaviour of β-Na0.33V2O5 upon electrochemical lithium insertion. J Mater Chem 21(30):11296–11305

    Article  Google Scholar 

  32. Liu H, Wang Y, Li L, Wang K, Hosono E, Zhou H (2009) Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. J Mater Chem 19(42):7885–7891

    Article  Google Scholar 

  33. Wadsley AD (1955) The crystal structure of Na2−xV6O15. Acta Crystallogr 8(11):695–701

    Article  Google Scholar 

  34. Wang H, Wang L, Wang X, Quan J, Mi L, Yuan L, Li G, Zhang B, Zhong H, Jiang Y (2016) High quality MoSe2 nanospheres with superior electrochemical properties for sodium batteries. J Electrochem Soc 163(8):A1627–A1632. doi:10.1149/2.0841608jes

    Article  Google Scholar 

  35. Su J, Wu XL, Lee JS, Kim J, Guo YG (2013) A carbon-coated Li3V2(PO4)3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries. J Mater Chem 1(7):2508–2514

    Article  Google Scholar 

  36. Du K, Guo H, Hu G, Peng Z, Cao Y (2013) Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries. J Power Sources 223(1):284–288

    Article  Google Scholar 

  37. Zhou X, Liu Y, Guo Y (2009) Effect of reduction agent on the performance of Li3V2(PO4)3/C positive material by one-step solid-state reaction. Electrochim Acta 54(8):2253–2258

    Article  Google Scholar 

  38. Li G, Jiang D, Wang H, Lan X, Zhong H, Jiang Y (2014) Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries. J Power Sources 265(1):325–334

    Article  Google Scholar 

  39. Tao J, Pan W, Jian W, Bie X, Fei D, Wei Y, Wang C, Gang C (2010) Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol–gel method. Electrochim Acta 55(12):3864–3869

    Article  Google Scholar 

  40. Yujie Z, Yunhua X, Yihang L, Chao L, Chunsheng W (2013) Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5(2):780–787

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology of China (Electronic Engineering Institute in Hefei (SKL 2015 KF 04)), the National Natural Science Foundation of China (No. 61076040) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 2012011111006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, Q., Wang, H. et al. PVP-modulated synthesis of NaV6O15 nanorods as cathode materials for high-capacity sodium-ion batteries. J Mater Sci 51, 8986–8994 (2016). https://doi.org/10.1007/s10853-016-0150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0150-y

Keywords

Navigation