Skip to main content
Log in

Properties of arsenic sulphide (β-As4S4) modified by mechanical activation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Arsenic sulphide β-As4S4 has been modified by mechanical activation in a planetary ball mill. As a consequence, the solid-state properties and dissolution yield have been influenced. The following changes were observed: the increase of specific surface area, changes in the morphology (the formation of submicron particles), the occurrence of nanoparticles (21–31 nm), changes in crystal lattice parameters and changes in the Raman shift of particular vibrations. As a consequence of these changes, the dissolution rate of β-As4S4 has been increased, which is a challenge for the application in cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bonazzi P, Bindi L (2008) A crystallographic review of arsenic sulfides: effects of chemical variations and changes induced by exposure to light. Z Kristallogr 223:132–147

    Google Scholar 

  2. Popescu M (2005) Disordered chalcogenide optoelectronic materials: phenomena and applications. J Optoelectron Adv Mater 7:2189–2210

    Google Scholar 

  3. Adam JL, Zhang X (2014) Chalcogenide glasses: preparation, properties and applications chalcogenide glasses: preparation properties and applications, vol 44. Woodhead Publishing, Oxford

    Google Scholar 

  4. Cui S, Chahal R, Shpotyuk Y, Boussard C, Lucas J, Charpentier F, Tariel H, Loreal O, Nazabal V, Sire O, Monbet V, Yang ZY, Lucas P, Bureau B (2014) Selenide and telluride glasses for mid-infrared bio-sensing. Proc SPIE 893805:1–9

    Google Scholar 

  5. Shpotyuk Y, Boussard-Pledel C, Nazabal V, Chahal R, Ari J, Pavlyk B, Cebulski J, Doualan JL, Bureau B (2015) Ga-modified As2Se3–Te glasses for active applications in IR photonics. Opt Mater 46:228–232

    Article  Google Scholar 

  6. Liu J, Lu YF, Wu Q, Goyer RA, Waalkes MP (2008) Mineral arsenicals in traditional medicines: orpiment, realgar, and arsenolite. J Pharmacol Exp Ther 326:363–368

    Article  Google Scholar 

  7. Dilda PJ, Hogg PJ (2007) Arsenical-based cancer drugs. Cancer Treat Rev 33:542–564

    Article  Google Scholar 

  8. Baláž P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin Heidelberg

    Google Scholar 

  9. Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado JM, Delogu F, Dutková E, Gaffet E, Gotor FJ, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637

    Article  Google Scholar 

  10. Baláž P, Choi WS, Dutková E (2007) Mechanochemical modification of properties and reactivity of nanosized arsenic sulphide As4S4. J Phys Chem Solids 68:1178–1183

    Article  Google Scholar 

  11. Tuktabiev MA, Popova SV, Brazhkin VV, Lyapin AG, Katayama Y (2009) Compressibility and polymorphism of alpha-As4S4 realgar under high pressure. J Phys-Condens Matter 21:385401

    Article  Google Scholar 

  12. Brazhkin VV, Bolotina NB, Dyuzheva TI, Gavriliuk AG, Lyapin AG, Popova SV, Samulski S (2011) AsS layered-structure compound: new kind of covalent crystals. CrystEngComm 13:2599–2603

    Article  Google Scholar 

  13. Hejny C, Sagl R, Tobbens DM, Miletich R, Wildner M, Nasdala L, Ullrich A, Balic-Zunic T (2012) Crystal-structure properties and the molecular nature of hydrostatically compressed realgar. Phys Chem Miner 39:399–412

    Article  Google Scholar 

  14. Lepore GO, Ballaran TB, Nestola F, Bindi L, Pasqual D, Bonazzi P (2012) Compressibility of beta-As4S4: an in situ high-pressure single-crystal X-ray study. Mineral Mag 76:963–973

    Article  Google Scholar 

  15. Wu JZ, Ho PC (2006) Evaluation of the in vitro activity and in vivo bioavailability of realgar nanoparticles prepared by cryo-grinding. Eur J Pharm Sci 29:35–44

    Article  Google Scholar 

  16. Baláž P, Fabián M, Pastorek M, Cholujová D, Sedlák J (2009) Mechanochemical preparation and anticancer effect of realgar As4S4 nanoparticles. Mater Lett 63:1542–1544

    Article  Google Scholar 

  17. Baláž P, Bujňáková Z, Kartachova O, Fabián M, Stalder B (2013) Properties and bioaccessibility of arsenic sulphide nanosuspensions. Mater Lett 104:84–86

    Article  Google Scholar 

  18. Baláž P, Nguyen AV, Fabián M, Cholujová D, Pastorek M, Sedlák J, Bujňáková Z (2011) Properties of arsenic sulphide As4S4 nanoparticles prepared by high-energy milling. Powder Technol 211:232–236

    Article  Google Scholar 

  19. Zhao WZ, Lu X, Yuan Y, Liu CS, Yang BC, Hong H, Wang GY, Zeng FY (2011) Effect of size and processing method on the cytotoxicity of realgar nanoparticles in cancer cell lines. Int J Nanomed 6:1569–1577

    Article  Google Scholar 

  20. Baláž P, Sedlák J, Pastorek M, Cholujová D, Vignarooban K, Bhosle S, Boolchand P, Bujňáková Z, Dutková E, Kartachova O, Stalder B (2012) Arsenic sulphide As4S4 nanoparticles: physico-chemical properties and anticancer effects. J Nano Res 18–19:149–155

    Google Scholar 

  21. Tian Y, Wang XB, Xi RG, Pan WS, Jiang S, Li Z, Zhao Y, Gao GH, Liu D (2014) Enhanced antitumor activity of realgar mediated by milling it to nanosize. Int J Nanomed 9:745–757

    Google Scholar 

  22. Shi F, Feng NP, Omari-Siaw E (2015) Realgar nanoparticle-based microcapsules: preparation and in vitro/in vivo characterizations. J Pharm Pharmacol 67:35–42

    Article  Google Scholar 

  23. James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KDM, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447

    Article  Google Scholar 

  24. WinXPOW Stoe (2010) Powder diffraction software package. Stoe&Cie GmbH, Darmstadt

    Google Scholar 

  25. Kraus W, Nolze G (1996) POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29:301–303

    Article  Google Scholar 

  26. Rodriguez-Carvajal J (2001) Recent developments of the program FullProf. Comission on powder diffraction (IUCr), vol Newsletter 26

  27. Hill RJ, Howard CJ (1987) Quantitative phase-analysis from neutron powder diffraction data using the Rietveld method. J Appl Crystallogr 20:467–474

    Article  Google Scholar 

  28. Rodriguez-Carvajal J, Roisnel T (2004) Line broadening analysis using FullProf*: determination of microstructural properties. European Powder Diffr Epdic 8(443–4):123–126

    Google Scholar 

  29. Horter D, Dressman JB (2001) Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Del Rev 46:75–87

    Article  Google Scholar 

  30. Opoczky L (1977) Fine grinding and agglomeration of silicates. Powder Technol 17:1–7

    Article  Google Scholar 

  31. Juhasz AZ (1990) Mechanical activation of minerals by grinding: pulverizing and morphology of particles. Ellis Horwood, Chichester

    Google Scholar 

  32. Rhodes M (1998) Introduction to particle technology. Wiley, Chichester

    Google Scholar 

  33. Zoppi M, Pratesi G (2012) The dual behavior of the beta-As4S4 altered by light. Am Mineral 97:890–896

    Article  Google Scholar 

  34. Baláž P, Baláž M, Achimovičová M, Bujňáková Z, Dutková E (2014) Mechanochemistry of solids: new prospects for extractive metallurgy, materials science and medicine. Acta Phys Pol, A 126:879–883

    Article  Google Scholar 

  35. Muniz-Miranda M, Sbrana G, Bonazzi P, Menchetti S, Pratesi G (1996) Spectroscopic investigation and normal mode analysis of As4S4 polymorphs. Spectrochim Acta Part a-Mol Biomol Spectrosc 52:1391–1401

    Article  Google Scholar 

  36. Forneris R (1969) The infrared and Raman spectra of realgar and orpiment. Am Miner 54:1062–1074

    Google Scholar 

  37. Soong R, Farmer VC (1978) The identification of sulphide minerals by infrared spectroscopy. Mineral Mag 42:277

    Article  Google Scholar 

  38. Wagner T, Kasap SO, Vlcek M, Sklenar A, Stronski A (1998) Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of AsxSi100-x glasses. J Mater Sci 33:5581–5588

    Article  Google Scholar 

  39. Bonazzi P, Menchetti S, Pratesi G, Muniz-Miranda M, Sbrana G (1996) Light-induced variations in realgar and beta-As4S4: X-ray diffraction and Raman studies. Am Miner 81:874–880

    Article  Google Scholar 

  40. Trentelman K, Stodulski L, Pavlosky M (1996) Characterization of pararealgar and other light-induced transformation products from realgar by Raman microspectroscopy. Anal Chem 68:1755–1761

    Article  Google Scholar 

  41. Georgiev DG, Boolchand P, Jackson KA (2003) Intrinsic nanoscale phase separation of bulk As2S3 glass. Phil Mag 83:2941–2953

    Article  Google Scholar 

  42. Chen P, Holbrook C, Boolchand P, Georgiev DG, Jackson KA, Micoulaut M (2008) Intermediate phase, network demixing, boson and floppy modes, and compositional trends in glass transition temperatures of binary AsxS1-x system. Phys Rev B 78:224208

    Article  Google Scholar 

  43. Burmeister CF, Kwade A (2013) Process engineering with planetary ball mills. Chem Soc Rev 42:7660–7667

    Article  Google Scholar 

  44. Boldyrev VV (1987) Mechanochemistry of inorganic solids. Thermochim Acta 110:303–317

    Article  Google Scholar 

  45. Amidon GL, Lennernas H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification—the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    Article  Google Scholar 

  46. Peltonen L, Hirvonen J (2010) Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol 62:1569–1579

    Article  Google Scholar 

  47. Merisko-Liversidge E, Liversidge GG (2011) Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Del Rev 63:427–440

    Article  Google Scholar 

  48. Parrot EL (1990) Comminution. In: Swarbrick J, Boylan JC (eds) Encyclopedia of Pharmaceutical Technology, vol 3. Marcel Dekker, New York, pp 101–121

    Google Scholar 

  49. Descamps M, Willart JF (2016) Perspectives on the amorphisation/milling relationship in pharmaceutical materials. Adv Drug Del Rev 100:51–66

    Article  Google Scholar 

  50. Kesisoglou F, Panmai S, Wu YH (2007) Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Del Rev 59:631–644

    Article  Google Scholar 

  51. Baláž P, Sedlák J (2010) Arsenic in cancer treatment: challenges for application of realgar nanoparticles (A minireview). Toxins 2:1568–1581

    Article  Google Scholar 

  52. Bujňáková Z, Baláž P, Makreski P, Jovanovski G, Čaplovičová M, Čaplovič Ľ, Shpotyuk O, Ingram A, Lee TC, Cheng JJ, Sedlák J, Turianicová E, Zorkovská A (2015) Arsenic sulfide nanoparticles prepared by milling: properties, free-volume characterization, and anti-cancer effects. J Mater Sci 50:1973–1985

    Article  Google Scholar 

Download references

Acknowledgements

The authors PB, MB, JB and ZB acknowledge the support of the Slovak Research and Development Agency (projects APVV-14-0103 and SK-UA-2013-0003) and the Slovak Grant Agency (project VEGA 2/0027/14). MV acknowledges project CZ.1.05/4.1.00/11.0251 “Center of Materials and Nanotechnologies” co-financed by the European Fund of the Regional Development and the state budget of the Czech Republic. MS thanks the Bulgarian Academy of Sciences and the Slovak Academy of Sciences for the support of her work by the realization of a bilateral project “Mechanochemical synthesis – an ecological friendly process in the production of materials for photocatalytic air and water purification”. The support of National Reference Laboratory for Pesticides of the University of Veterinary Medicine and Pharmacy in Košice is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Baláž.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baláž, P., Baláž, M., Shpotyuk, O. et al. Properties of arsenic sulphide (β-As4S4) modified by mechanical activation. J Mater Sci 52, 1747–1758 (2017). https://doi.org/10.1007/s10853-016-0466-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0466-7

Keywords

Navigation