Skip to main content
Log in

High piezoelectricity in (K,Na)(Nb,Sb)O3–(Bi,La,Na,Li)ZrO3 lead-free ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new lead-free piezoelectric system of (1 − x)(K0.48Na0.52+y )(Nb0.95Sb0.05)O3x(Bi0.8La0.2)0.5(Na0.8Li0.2)0.5ZrO3 [(1 − x)KNa y NS–xBLNLZ] were prepared using the conventional solid-state sintering method. The effects of BLNLZ content and Na excess on the microstructure and electrical properties of the ceramics were investigated. It was found that an enhanced dielectric, ferroelectric, and piezoelectric behavior has been attained by successfully constructing the rhombohedral–tetragonal phase boundary in the ceramics with x = 0.04. The small Na excess can greatly improve ceramics properties due to the increase of abnormal grain growth caused by the formation of a small amount of liquid phase. As a result, the ceramic with x = 0.04 and y = 0.004 has optimum electrical properties of d 33 ~470 pC/N, k p ~50 %, 2P r ~32.3 μC/cm2, and 2E c ~14.2 kV/cm, together with a Curie temperature of ~210 °C. The giant d 33 of this ceramic system could be comparable with the most of the reported results about the alkali niobate-based lead-free piezoceramics. It was believed that such an excellent piezoelectricity of this material system will promote the development of KNN-based lead-free ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jaffe B, Roth RS, Marzullo S (1955) Properties of piezoelectric ceramics in the solid-solution series lead titanate–lead zirconate–lead oxide—tin oxide and lead titanate–lead hafnate. J Res Natl Bur Stand 55(5):239–254. doi:10.6028/jres.055.028

    Article  Google Scholar 

  2. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London

    Google Scholar 

  3. Rodel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177. doi:10.1111/j.1551-2916.2009.03061.x

    Article  Google Scholar 

  4. Takenaka T, Nagata H (1999) Present status of non-lead-based piezoelectric ceramics. In: Mizutani N, Shinozaki K, Kamehara N, Kimura T (eds) Electroceramics in Japan I, vol 157-1. Key Eng Mater. Trans Tech Publications, Clausthal Zellerfe, pp 57–63

    Google Scholar 

  5. Zhang SJ, Xia R, Shrout TR (2007) Lead-free piezoelectric ceramics vs. PZT? J Electroceram 19(4):251–257. doi:10.1007/s10832-007-9056-z

    Article  Google Scholar 

  6. Zhang Y, Li LY, Bai WF, Shen B, Zhai JW, Li B (2015) Effect of CaZrO3 on phase structure and electrical properties of KNN-based lead-free ceramics. RSC Adv 5(25):19647–19651. doi:10.1039/c4ra16506c

    Article  Google Scholar 

  7. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432(7013):84–87. doi:10.1038/nature03028

    Article  Google Scholar 

  8. Gao R, Chu X, Huan Y, Wang X, Li L (2014) (K, Na) NbO3 based piezoceramics prepared by a two-step calcining and ball milling route. Mater Lett 123:242–245. doi:10.1016/j.matlet.2014.03.027

    Article  Google Scholar 

  9. Wu J, Xiao D, Zhu J (2015) Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115(7):2559–2595. doi:10.1021/cr5006809

    Article  Google Scholar 

  10. Zuo R, Fu J, Lu S, Xu Z, Johnson DW (2011) Normal to relaxor ferroelectric transition and domain morphology evolution in (K, Na)(Nb, Sb)O3–LiTaO3–BaZrO3 lead-free ceramics. J Am Ceram Soc 94(12):4352–4357. doi:10.1111/j.1551-2916.2011.04712.x

    Article  Google Scholar 

  11. Wang X, Wu J, Xiao D, Zhu J, Cheng X, Zheng T, Zhang B, Lou X, Wang X (2014) Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J Am Chem Soc 136(7):2905–2910. doi:10.1021/ja500076h

    Article  Google Scholar 

  12. Chang Y, Yang Z-p, Ma D, Liu Z, Wang Z (2008) Phase transitional behavior, microstructure, and electrical properties in Ta-modified [(K0.458Na0.542)0.96Li0.04]NbO3 lead-free piezoelectric ceramics. J Appl Phys 104(2):024109. doi:10.1063/1.2957591

    Article  Google Scholar 

  13. Ming B-Q, Wang J-F, Qi P, Zang G-Z (2007) Piezoelectric properties of (Li, Sb, Ta) modified (Na, K)NbO3 lead-free ceramics. J Appl Phys 101(5):054103. doi:10.1063/1.2436923

    Article  Google Scholar 

  14. Li JF, Wang K, Zhu FY, Cheng LQ, Yao FZ (2013) (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96(12):3677–3696. doi:10.1111/jace.12715

    Article  Google Scholar 

  15. Sung YS, Baik S, Lee JH, Ryu GH, Do D, Song TK, Kim MH, Kim WJ (2012) Enhanced piezoelectric properties of (Na0.5+y+z K0.5−y )(Nb1−x Ta x )O3 ceramics. Appl Phys Lett 101(1):012902. doi:10.1063/1.4732523

    Article  Google Scholar 

  16. Akdoğan EK, Kerman K, Abazari M, Safari A (2008) Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04) − (Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl Phys Lett 92(11):112908. doi:10.1063/1.2897033

    Article  Google Scholar 

  17. Guo Y, Kakimoto K-i, Ohsato H (2005) (Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics. Mater Lett 59(2–3):241–244. doi:10.1016/j.matlet.2004.07.057

    Article  Google Scholar 

  18. Pang X, Qiu J, Zhu K, Luo J (2010) Study on the sintering mechanism of KNN-based lead-free piezoelectric ceramics. J Mater Sci 46(7):2345–2349. doi:10.1007/s10853-010-5080-5

    Article  Google Scholar 

  19. Higashide K, Kakimoto K-i, Ohsato H (2007) Temperature dependence on the piezoelectric property of (1 − x)(Na0.5K0.5)NbO3xLiNbO3 ceramics. J Eur Ceram Soc 27(13–15):4107–4110. doi:10.1016/j.jeurceramsoc.2007.02.103

    Article  Google Scholar 

  20. Seo Y-H, Franzbach DJ, Koruza J, Benčan A, Malič B, Kosec M, Jones JL, Webber KG (2013) Nonlinear stress–strain behavior and stress-induced phase transitions in soft Pb(Zr1−x Ti x )O3 at the morphotropic phase boundary. Phys Rev B 87(9):094116. doi:10.1103/PhysRevB.87.094116

    Article  Google Scholar 

  21. Cheng X, Wu J, Wang X, Zhang B, Zhu J, Xiao D, Wang X, Lou X (2013) Giant d 33 in (K, Na)(Nb, Sb)O3–(Bi, Na, K, Li)ZrO3 based lead-free piezoelectrics with high Tc. Appl Phys Lett 103(5):052906. doi:10.1063/1.4817517

    Article  Google Scholar 

  22. Zhang B, Wu J, Cheng X, Wang X, Xiao D, Zhu J, Wang X, Lou X (2013) Lead-free piezoelectrics based on potassium–sodium niobate with giant d 33. ACS Appl Mater Interfaces 5(16):7718–7725. doi:10.1021/am402548x

    Article  Google Scholar 

  23. Liang W, Wu W, Xiao D, Zhu J, Wu J (2011) Construction of new morphotropic phase boundary in 0.94(K0.4−x Na0.6Ba x Nb1−x Zr x )O3–0.06LiSbO3 lead-free piezoelectric ceramics. J Mater Sci 46(21):6871–6876. doi:10.1007/s10853-011-5650-1

    Article  Google Scholar 

  24. Guo Y, Kakimoto K-i, Ohsato H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl Phys Lett 85(18):4121. doi:10.1063/1.1813636

    Article  Google Scholar 

  25. Klein N, Hollenstein E, Damjanovic D, Trodahl HJ, Setter N, Kuball M (2007) A study of the phase diagram of (K, Na, Li)NbO3 determined by dielectric and piezoelectric measurements, and raman spectroscopy. J Appl Phys 102(1):014112. doi:10.1063/1.2752799

    Article  Google Scholar 

  26. Zhao P, Zhang B-P, Li J-F (2007) High piezoelectric d 33 coefficient in Li-modified lead-free (Na, K)NbO3 ceramics sintered at optimal temperature. Appl Phys Lett 90(24):242909. doi:10.1063/1.2748088

    Article  Google Scholar 

  27. Šturm S, Benčan A, Gulgun MA, Malič B, Kosec M (2011) Determining the stoichiometry of (K, Na)NbO3 using optimized energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy analyses in a transmission electron microscope. J Am Ceram Soc 94(8):2633–2639. doi:10.1111/j.1551-2916.2011.04389.x

    Article  Google Scholar 

  28. Zheng T, Wu J, Xiao D, Zhu J (2015) Giant d 33 in nonstoichiometric (K, Na)NbO3-based lead free ceramics. Scr Mater 94:25–27. doi:10.1016/j.scriptamat.2014.09.008

    Article  Google Scholar 

  29. Liu W, Tan G, Xiong P, Xue X, Hao H, Ren H (2014) Phase transition and piezoelectric properties of (1 − x)K0.5Na0.5NbO3xLiSbO3 ceramics by hydrothermal powders. J Mater Sci 25(5):2348–2354. doi:10.1007/s10854-014-1886-2

    Google Scholar 

  30. Durruthy-Rodríguez MD, Hernández-García M, Portelles J, Fuentes J, Hernández-Landaverde MA, Ramírez Cardona M, Yañez-Limón JM (2015) Strong emissions of blue–yellow–red regions of La and Ti modified KNaNbO3 ferroelectric ceramics. J Adv Ceram 4(3):183–189. doi:10.1007/s40145-015-0144-2

    Article  Google Scholar 

  31. Liang W, Wu W, Xiao D, Zhu J, Zhang S (2011) Effect of the addition of CaZrO3 and LiSbO3 on the phase transition and piezoelectric properties of K0.5Na0.5NbO3 lead-free ceramics. J Am Ceram Soc 94(12):4317–4322. doi:10.1111/j.1551-2916.2011.04660.x

    Article  Google Scholar 

  32. Zheng T, Wu J, Cheng X, Wang X, Zhang B, Xiao D, Zhu J, Wang X, Lou X (2014) High strain in (K0.40Na0.60)(Nb0.955Sb0.045)O3–Bi0.50Na0.50ZrO3 lead-free ceramics with large piezoelectricity. J Mater Chem C 2(41):8796–8803. doi:10.1039/c4tc01533a

    Article  Google Scholar 

  33. Du H, Zhou W, Zhu D, Fa L, Qu S, Li Y, Pei Z (2008) Sintering characteristic, microstructure, and dielectric relaxor behavior of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)TiO3 lead-free ceramics. J Am Ceram Soc 91(9):2903–2909. doi:10.1111/j.1551-2916.2008.02528.x

    Article  Google Scholar 

  34. Zhang B, Wang X, Cheng X, Zhu J, Xiao D, Wu J (2013) Enhanced d 33 value in (1 − x)[(K0.50Na0.50)0.97Li0.03Nb0.97Sb0.03O3] − xBaZrO3 lead-free ceramics with an orthorhombic–rhombohedral phase boundary. J Alloys Compd 581:446–451. doi:10.1016/j.jallcom.2013.06.165

    Article  Google Scholar 

  35. Wu J, Xiao D, Wang Y, Wu W, Zhang B, Li J, Zhu J (2008) CaTiO3-modified [(K0.5Na0.5)0.94Li0.06](Nb0.94Sb0.06)O3 lead-free piezoelectric ceramics with improved temperature stability. Scr Mater 59(7):750–752. doi:10.1016/j.scriptamat.2008.06.011

  36. Lin D, Li Z, Zhang S, Xu Z, Yao X (2009) Dielectric/piezoelectric properties and temperature dependence of domain structure evolution in lead free (K0.5Na0.5)NbO3 single crystal. Solid State Commun 149(39–40):1646–1649. doi:10.1016/j.ssc.2009.06.029

    Article  Google Scholar 

  37. Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103(25):257602. doi:10.1103/PhysRevLett.103.257602

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51332003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Xing, J., Tan, Z. et al. High piezoelectricity in (K,Na)(Nb,Sb)O3–(Bi,La,Na,Li)ZrO3 lead-free ceramics. J Mater Sci 51, 4963–4972 (2016). https://doi.org/10.1007/s10853-016-9801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9801-2

Keywords

Navigation