Skip to main content
Log in

Strength prediction for bi-axial braided composites by a multi-scale modelling approach

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Braided textile-reinforced composites have become increasingly attractive as protection materials thanks to their unique inter-weaving structures and excellent energy-absorption capacity. However, development of adequate models for simulation of failure processes in them remains a challenge. In this study, tensile strength and progressive damage behaviour of braided textile composites are predicted by a multi-scale modelling approach. First, a micro-scale model with hexagonal arrays of fibres was built to compute effective elastic constants and yarn strength under different loading conditions. Instead of using cited values, the input data for this micro-scale model were obtained experimentally. Subsequently, the results generated by this model were used as input for a meso-scale model. At meso-scale, Hashin’s 3D with Stassi’s failure criteria and a modified Murakami-type stiffness-degradation scheme was employed in a user-defined subroutine developed in the general-purpose finite-element software Abaqus/Standard. An overall stress–strain curve of a meso-scale representative unit cell was verified with the experimental data. Numerical studies show that bias yarns suffer continuous damage during an axial tension test. The magnitudes of ultimate strengths and Young’s moduli of the studied braided composites decreased with an increase in the braiding angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Tatar Y, Ramazanoglu N, Camliguney AF, Karadag Saygi E, Cotuk HB (2014) The effectiveness of shin guards used by football players. J Sport Sci Med 13:120–127

    Google Scholar 

  2. Salvi AG, Waas AM, Caliskan A (2008) Energy absorption and damage propagation in 2D triaxially braided carbon fiber composites: effects of in situ matrix properties. J Mater Sci 43(15):5168–5184. doi:10.1007/s10853-008-2684-0

    Article  Google Scholar 

  3. Sun J, Zhou G, Zhou C (2015) Microstructure and mechanical properties of 3D surface-core 4-directional braided composites. J Mater Sci 50(22):7398–7412. doi:10.1007/s10853-015-9297-1

    Article  Google Scholar 

  4. Wan Y, Wang Y, Gu B (2015) Finite element prediction of the impact compressive properties of three-dimensional braided composites using multi-scale model. Compos Struct 128:381–394

    Article  Google Scholar 

  5. Phadnis VA, Makhdum F, Roy A, Silberschmidt VV (2013) Drilling in carbon/epoxy composites: experimental investigations and finite element implementation. Compos Part A Appl Sci Manuf 47:41–51

    Article  Google Scholar 

  6. Bogdanovich AE (2006) Multi-scale modeling, stress and failure analyses of 3-D woven composites. J Mater Sci 41(20):6547–6590. doi:10.1007/s10853-006-0197-2

    Article  Google Scholar 

  7. Ivanov DS, Baudry F, Van Den Broucke B, Lomov SV, Xie H, Verpoest I (2009) Failure analysis of triaxial braided composite. Compos Sci Technol 69(9):1372–1380

    Article  Google Scholar 

  8. Xiao X, Kia HG, Gong XJ (2011) Strength prediction of a triaxially braided composite. Compos Part A Appl Sci Manuf 42:1000–1006

    Article  Google Scholar 

  9. Fang GD, Jun L, Baolai W (2009) Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos Struct 89:126–133

    Article  Google Scholar 

  10. Prabhakar P, Waas AM (2013) Interaction between kinking and splitting in the compressive failure of unidirectional fiber reinforced composites. Compos Struct 98:85–92

    Article  Google Scholar 

  11. Binienda WK, Li X (2010) Mesomechanical model for numerical study of two-dimensional triaxially braided composite. J Eng Mech 136:1366–1379

    Article  Google Scholar 

  12. Song S, Waas AM, Shahwan KW, Faruque O, Xiao X (2008) Compression response of 2D braided textile composites: single cell and multiple cell micromechanics based strength predictions. J Compos Mater 42(23):2461–2482

    Article  Google Scholar 

  13. Zhang C, Binienda WK, Goldberg RK, Kohlman LW (2014) Meso-scale failure modeling of single layer triaxial braided composite using finite element method. Compos Part A Appl Sci Manuf 58:36–46

    Article  Google Scholar 

  14. Mao JZ, Sun XS, Ridha M, Tan VBC, Tay TE (2013) A modeling approach across length scales for progressive failure analysis of woven composites. Appl Compos Mater 20:213–231

    Article  Google Scholar 

  15. Ernst G, Vogler M, Hühne C, Rolfes R (2010) Multiscale progressive failure analysis of textile composites. Compos Sci Technol 70:61–72

    Article  Google Scholar 

  16. Lomov SV, Ivanov DS, Verpoest I, Zako M, Kurashiki T, Nakai H, Hirosawa S (2007) Meso-FE modelling of textile composites: road map, data flow and algorithms. Compos Sci Technol 67:1870–1891

    Article  Google Scholar 

  17. Llorca J, González C, Molina-Aldareguía JM, Segurado J, Seltzer R, Sket F, Canal LP (2011) Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv Mater 23:5130–5147

    Article  Google Scholar 

  18. Cai Y, Sun H (2013) Prediction on viscoelastic properties of three-dimensionally braided composites by multi-scale model. J Mater Sci 48(19):6499–6508. doi:10.1007/s10853-013-7524-1

    Article  Google Scholar 

  19. Bednarcyk B, Stier B, Simon JW, Reese S, Pineda EJ (2015) Meso- and micro-scale modeling of damage in plain weave composites. Compos Struct 121:258–270

    Article  Google Scholar 

  20. Zhang C, Binienda WK (2014) Numerical analysis of free-edge effect on size-influenced mechanical properties of single-layer triaxially braided composites. Appl Compos Mater 21:841–859

    Article  Google Scholar 

  21. Zhang DY, Waas AM, Yen CF (2015) Progressive damage and failure response of hybrid 3D textile composites subjected to flexural loading, part I: experimental studies. Int J Solid Struct 75–76:309–320

    Article  Google Scholar 

  22. Zhang DY, Waas AM, Yen CF (2015) Progressive damage and failure response of hybrid 3D textile composites subjected to flexural loading, part II: mechanics based multiscale computational modeling of progressive damage and failure. Int J Solid Strut 75–76:321–335

    Article  Google Scholar 

  23. Xu L, Jin CZ, Kyu Ha S (2014) Ultimate strength prediction of braided textile composites using a multi-scale approach. J Compos Mater. doi:10.1177/0021998314521062

    Google Scholar 

  24. Zhong S, Guo L, Liu G, Lu H, Zeng T (2015) A continuum damage model for three-dimensional woven composites and finite element implementation. Compos Struct 128:1–9

    Article  Google Scholar 

  25. Zhang C, Li N, Wang W, Binienda WK, Fang H (2015) Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model. Compos Struct 125:104–116

    Article  Google Scholar 

  26. Miravete A, Bielsa JM, Chiminelli A, Cuartero J, Serrano S, Tolosana N, de Villoria RG (2006) 3D mesomechanical analysis of three-axial braided composite materials. Compos Sci Technol 66:2954–2964

    Article  Google Scholar 

  27. Ji X, Wang C, Francis BAP, Chia ESM, Zheng L, Yang J, Chen Z (2015) Mechanical and interfacial properties characterisation of single carbon fibres for composite applications. Exp Mech 55:1057–1065

    Article  Google Scholar 

  28. Wang C, Ji X, Roy A, Silberschmidt VV, Chen Z (2015) Shear strength and fracture toughness of carbon fibre/epoxy interface: effect of surface treatment. Mater Des 85:800–807

    Google Scholar 

  29. McWilliams B, Dibelka J, Yen CF (2014) Multi scale modeling and characterization of inelastic deformation mechanisms in continuous fiber and 2D woven fabric reinforced metal matrix composites. Mater Sci Eng A 618:142–152

    Article  Google Scholar 

  30. Huang YC, Jin KK, Ha SK (2008) Effects of fiber arrangement on mechanical behavior of unidirectional composites. J Compos Mater 42(18):1851–1871

    Article  Google Scholar 

  31. Xia Z, Zhang Y, Ellyin F (2003) A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct 40:1907–1921

    Article  Google Scholar 

  32. Ji X, Khatri AM, Chia ES, Cha RK, Yeo BT, Joshi SC, Chen Z (2013) Multi-scale simulation and finite-element-assisted computation of elastic properties of braided textile reinforced composites. J Compos Mater 48:931–949

    Article  Google Scholar 

  33. Song S, Waas AM, Shahwan KW, Xiao X, Faruque O (2007) Braided textile composites under compressive loads: modeling the response, strength and degradation. Compos Sci Technol 67:3059–3070

    Article  Google Scholar 

  34. Zhang C, Binienda WK (2014) A meso-scale finite element model for simulating free-edge effect in carbon/epoxy textile composite. Mech Mater 76:1–19

    Article  Google Scholar 

  35. Garnich MR, Akula VMK (2009) Review of degradation models for progressive failure analysis of fiber reinforced polymer composites. Appl Mech Rev 62:010801

    Article  Google Scholar 

  36. Li X, Binienda WK, Goldberg RK (2011) Finite-element model for failure study of two-dimensional triaxially braided composite. J Aerosp Eng 24:170–180

    Article  Google Scholar 

  37. Christensen RM (2007) A comprehensive theory of yielding and failure for isotropic materials. J Eng Mater Technol 129(2):173–181

    Article  Google Scholar 

  38. Hashin Z (1980) Failure criteria for unidirectional fibre composites. J Appl Mech 47:329–334

    Article  Google Scholar 

  39. Chamis CC (1989) Mechanics of composite materials: past, present and future. J Compos Technol Res 11:3–14

    Article  Google Scholar 

  40. Pankow M, Waas A, Yend C, Ghiorse S (2009) A new lamination theory for layered textile composites that account for manufacturing induced effects. Compos Part A Appl Sci Manuf 40(12):1991–2003

    Article  Google Scholar 

  41. Jia X, Xia Z, Gu B (2013) Nonlinear viscoelastic multi-scale repetitive unit cell model of 3D woven composites with damage evolution. Int J Solids Struct 50:3539–3554

    Article  Google Scholar 

  42. Cox BN, Davis JB (2000) Braided composites for energy absorption under tensile loading. J Mater Sci 35(14):3467–3478. doi:10.1023/A:1004888824424

    Article  Google Scholar 

Download references

Acknowledgements

CW is grateful for the financial support by NTU through the PhD scholarship award. The authors are grateful for the technical support by Temasek Laboratory@NTU and Aerospace Lab in the School of MAE at NTU, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhong, Y., Bernad Adaikalaraj, P.F. et al. Strength prediction for bi-axial braided composites by a multi-scale modelling approach. J Mater Sci 51, 6002–6018 (2016). https://doi.org/10.1007/s10853-016-9901-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9901-z

Keywords

Navigation