Skip to main content
Log in

Chalcogenide mechanochemistry in materials science: insight into synthesis and applications (a review)

  • Mechanochemical Synthesis
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this paper on recent development in chalcogenide mechanochemistry is to provide a comprehensive review of advances achieved in the field of mechanochemical synthesis of nanocrystalline binary, ternary and quaternary chalcogenides and their nanocomposites. The synthetic approaches from elements and compounds are reviewed. The current focus of mechanochemical synthesis is on materials with potential utilization in future. In order to demonstrate the suitability of mechanochemically prepared chalcogenides for various applications, the concrete examples of the utilization of these materials in materials engineering, bioimaging and cancer treatment are provided. The possibility of scaling for industrial applications is also reviewed. The simplification of the synthesis processes with their reproducibility and easy way of operation, ecological safety and the product extraordinariness (nanoscale aspects) emphasizes the suitability of mechanochemistry application in chalcogenide synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Reprinted with permission from Ref. [43]. Copyright 2014, Elsevier

Figure 3

Reprinted with permission from Ref. [43]. Copyright 2014, Elsevier

Figure 4

Reprinted with permission from Ref. [48]. Copyright 2014, Elsevier

Figure 5

Reprinted with permission from Ref. [48]. Copyright 2014, Elsevier

Figure 6

Reprinted with permission from Ref. [62]. Copyright 2016, Royal Society of Chemistry

Figure 7

Reprinted with permission from Ref. [62]. Copyright 2016, Royal Society of Chemistry

Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Reprinted with permission from Ref. [40]. Copyright 2009, Springer

Figure 21

Reprinted with permission from Ref. [38], Copyright 2011, Elsevier

Figure 22

Reprinted with permission from Ref. [126]. Copyright 2013, Elsevier

Figure 23

Reprinted with permission from Ref. [35]. Copyright 2014, Royal Society of Chemistry

Figure 24

Reprinted with permission from Ref. [133]. Copyright 2016, Springer

Figure 25

Reprinted with permission from Ref. [133]. Copyright 2016, Springer

Figure 26

Reprinted with permission from Ref. [137]. Copyright 2014, Elsevier

Figure 27

Reprinted with permission from Ref. [139]. Copyright 2016, Elsevier

Figure 28

Reprinted with permission from Ref. [139]. Copyright 2016, Elsevier

Figure 29

Reprinted with permission from Ref. [41]. Copyright 2008, Elsevier

Figure 30

Reprinted with permission from Ref. [159]. Copyright 2014, Royal Society of Chemistry

Figure 31

Reprinted with permission from Ref. [30]. Copyright 2014, Elsevier

Figure 32

Reprinted with permission from Ref. [29]. Copyright 2016, Elsevier

Figure 33
Figure 34

Reprinted with permission from Ref. [11]. Copyright 2013, Royal Society of Chemistry

Figure 35

Reprinted with permission from Ref. [178]. Copyright 2001, Elsevier

Figure 36

Modified with permission from Ref. [173]. Copyright 2017, Springer

Figure 37

Modified with permission from Ref. [34]. Copyright 2017, Elsevier

Figure 38
Figure 39
Figure 40
Figure 41

Reprinted with permission from Ref. [115]. Copyright 2006, Elsevier

Figure 42
Figure 43
Figure 44

Similar content being viewed by others

References

  1. Baláž P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin Heidelberg

    Google Scholar 

  2. Baláž P, Achimovičová M, Baláž M et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637

    Article  Google Scholar 

  3. Baláž P, Baláž M, Achimovičová M, Bujňáková Z, Dutková E (2014) Mechanochemistry of solids: new prospects for extractive metallurgy, materials science and medicine. Acta Phys Pol A 126:879–883

    Article  Google Scholar 

  4. Baláž P, Baláž M, Bujňáková Z (2014) Mechanochemistry in technology: from minerals to nanomaterials and drugs. Chem Eng Technol 37:747–756

    Article  Google Scholar 

  5. Baláž P, Dutková E (2009) Fine milling in applied mechanochemistry. Miner Eng 22:681–694

    Article  Google Scholar 

  6. Urakaev FK (2013) Phenomenology, mechanism and kinetics of the combustion reactions in mechanochemical reactors for the example of Zn–S–Sn system processing in a ball mill (overview). Int J Comput Mater Sci Surf Eng 5:224–261

    Google Scholar 

  7. Šepelák V, Düvel A, Wilkening M, Becker KD, Heitjans P (2013) Mechanochemical reactions and syntheses of oxides. Chem Soc Rev 42:7507–7520

    Article  Google Scholar 

  8. Takacs L (2013) The historical development of mechanochemistry. Chem Soc Rev 42:7649–7659

    Article  Google Scholar 

  9. Burmeister CF, Kwade A (2013) Process engineering with planetary ball mills. Chem Soc Rev 42:7660–7667

    Article  Google Scholar 

  10. Ralphs K, Hardacre C, James SL (2013) Application of heterogeneous catalysts prepared by mechanochemical synthesis. Chem Soc Rev 42:7701–7718

    Article  Google Scholar 

  11. Boldyreva E (2013) Mechanochemistry of inorganic and organic systems: What is similar, what is different? Chem Soc Rev 42:7719–7738

    Article  Google Scholar 

  12. Friščić T (2010) New opportunities for materials synthesis using mechanochemistry. J Mater Chem 20:7599–7605

    Article  Google Scholar 

  13. Zhu SE, Li F, Wang GW (2013) Mechanochemistry of fullerenes and related materials. Chem Soc Rev 42:7535–7570

    Article  Google Scholar 

  14. Wang GW (2013) Mechanochemical organic synthesis. Chem Soc Rev 42:7668–7700

    Article  Google Scholar 

  15. James SL, Adams CJ, Bolm C et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447

    Article  Google Scholar 

  16. Stolle A, Szuppa T, Leonhardt SES, Ondruschka B (2011) Ball milling in organic synthesis: solutions and challenges. Chem Soc Rev 40:2317–2329

    Article  Google Scholar 

  17. Baláž P, Dutková E (2007) Mechanochemistry of sulphides: from minerals to advanced nanocrystalline materials. J Therm Anal Calorim 90:85–92

    Article  Google Scholar 

  18. Urakaev FK (2011) Scientific principles for preparation nanoscale particles by the exchange mechanochemical reactions (overview). Int J Comput Mater Sci Surf Eng 4:347–373

    Google Scholar 

  19. Braga D, Maini L, Grepioni F (2013) Mechanochemical preparation of co-crystals. Chem Soc Rev 42:7638–7648

    Article  Google Scholar 

  20. Šepelák V, Becker KD (2012) Mechanochemistry: from mechanical degradation to novel materials properties. J Korean Ceram Soc 42:19–28

    Article  Google Scholar 

  21. James SL, Friscic T (2013) Mechanochemistry. Chem Soc Rev 42:7494–7496

    Article  Google Scholar 

  22. May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497–7506

    Article  Google Scholar 

  23. Cravotto G, Gaudino EC, Cintas P (2013) On the mechanochemical activation by ultrasound. Chem Soc Rev 42:7521–7534

    Article  Google Scholar 

  24. Friscic T (2012) Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal-organic frameworks. Chem Soc Rev 41:3493–3510

    Article  Google Scholar 

  25. Šepelák V, Begin-Colin S, Le Caer G (2012) Transformations in oxides induced by high-energy ball-milling. Dalton Trans 41:11927–11948

    Article  Google Scholar 

  26. Brion D (1980) Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a ĺair et dans ĺeau. Appl Surf Sci 5:132–152

    Article  Google Scholar 

  27. Baláž P (2000) Extractive metallurgy of activated minerals. Elsevier, Amsterdam

    Google Scholar 

  28. Baláž P, Boldižárová E, Godočíková E, Briančin J (2003) Mechanochemical route for sulphide nanoparticles preparation. Mater Lett 57:1585–1589

    Article  Google Scholar 

  29. Baláž P, Baláž M, Dutková E et al (2016) CdS/ZnS nanocomposites: from mechanochemical synthesis to cytotoxicity issues. Mater Sci Eng C 58:1016–1023

    Article  Google Scholar 

  30. Baláž P, Sayagués MJ, Baláž M et al (2014) CdSe@ZnS nanocomposites prepared by a mechanochemical route: no release of Cd2+ ions and negligible in vitro cytotoxicity. Mater Res Bull 49:302–309

    Article  Google Scholar 

  31. Baláž P, Jardin R, Dutková E et al (2012) Mechanochemical synthesis and characterization of II–VI nanocrystals: challenge for cytotoxicity issues. Acta Phys Pol A 122:224–229

    Article  Google Scholar 

  32. Baláž P, Pourghahramani P, Dutková E, Fabián M, Kováč J, Šatka A (2009) PbS nanostructures synthesized via surfactant assisted mechanochemical route. Cent Eur J Chem 7:215–221

    Google Scholar 

  33. Dutková E, Baláž P, Pourghahramani P, Velumani S, Ascencio JA, Kostova NG (2009) Properties of mechanochemically synthesized ZnS nanoparticles. J Nanosci Nanotechnol 9:6600–6605

    Article  Google Scholar 

  34. Bujňáková Z, Baláž M, Dutková E et al (2017) Mechanochemical approach for the capping of mixed core CdS/ZnS nanocrystals: elimination of cadmium toxicity. J Colloid Interface Sci 486:97–111

    Article  Google Scholar 

  35. Baláž P, Baláž M, Čaplovičová M, Zorkovská A, Čaplovič Ľ, Psotka M (2014) The dual role of sulfur-containing amino acids in the synthesis of IV–VI semiconductor nanocrystals: a mechanochemical approach. Faraday Discuss 170:169–179

    Article  Google Scholar 

  36. Baláž M, Baláž P, Tjuliev G et al (2013) Cystine-capped CdSe@ZnS nanocomposites: mechanochemical synthesis, properties, and the role of capping agent. J Mater Sci 48:2424–2432. doi:10.1007/s10853-012-7029-3

    Article  Google Scholar 

  37. Dutková E, Baláž P, Pourghahramani P et al (2012) Mechanochemically synthesised Zn x Cd1−x S nanoparticles for solar energy applications. J Nano Res 18–19:247–256

    Article  Google Scholar 

  38. Baláž P, Pourghahramani P, Achimovičová M et al (2011) Mechanochemical synthesis and reactivity of PbS nanocrystals. J Cryst Growth 332:1–6

    Article  Google Scholar 

  39. Baláž P, Škorvánek I, Fabián M et al (2010) Properties of magnetically diluted nanocrystals prepared by mechanochemical route. J Alloys Compd 504:S340–S344

    Article  Google Scholar 

  40. Dutková E, Baláž P, Pourghahramani P (2009) CdS nanoparticles mechanochemically synthesized in a high-energy mill. J Optoelectron Adv Mater 11:2102–2107

    Google Scholar 

  41. Dutková E, Baláž P, Pourghahramani P et al (2008) Mechanochemical solid state synthesis and characterization of Cd x Zn1−x S nanocrystals. Solid State Ion 179:1242–1245

    Article  Google Scholar 

  42. Dutková E, Takacs L, Sayagués MJ, Baláž P, Kováč J, Šatka A (2013) Mechanochemical synthesis of Sb2S3 and Bi2S3 nanoparticles. Chem Eng Sci 85:25–29

    Article  Google Scholar 

  43. Dutková E, Sayagues MJ, Zorkovská A et al (2014) Properties of mechanochemically synthesized nanocrystalline Bi2S3 particles. Mater Sci Semicond Process 27:267–272

    Article  Google Scholar 

  44. Zhao WB, Zhu JH, Zhao Y, Chen HY (2004) Photochemical synthesis and characterization of Bi2S3 nanofibers. Mater Sci Eng B 110:307–313

    Article  Google Scholar 

  45. Nayak BB, Acharya HN, Mitra GB, Mathur BK (1983) Structural characterization of Bi2−x Sb x S3 films prepared by the dip-dry method. Thin Solid Films 105:17–24

    Article  Google Scholar 

  46. Spanhel L, Anderson MA (1990) Synthesis of porous quantum-size CdS membranes—photoluminescence phase-shift and demodulation measurements. JACS 112:2278–2284

    Article  Google Scholar 

  47. Zhao LD, Zhang BP, Liu WS, Zhang HL, Li JF (2008) Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. J Solid State Chem 181:3278–3282

    Article  Google Scholar 

  48. Dutková E, Sayagués MJ, Real C et al (2014) Mechanochemically synthesized nanocrystalline Sb2S3 particles. Acta Phys Pol A 126:943–946

    Article  Google Scholar 

  49. Calka A, Mosbah A, Stanford N, Baláž P (2008) Rapid synthesis of Bi and Sb sulfides using electric discharge assisted mechanical milling. J Alloys Compd 455:285–288

    Article  Google Scholar 

  50. Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulfides. Cambridge University Press, Cambridge

    Google Scholar 

  51. Roy P, Srivastava SK (2015) Nanostructured copper sulfides: synthesis, properties and applications. CrystEngComm 17:7801–7815

    Article  Google Scholar 

  52. Shamraiz U, Hussain RA, Badshah A (2016) Fabrication and applications of copper sulfide (CuS) nanostructures. J Solid State Chem 238:25–40

    Article  Google Scholar 

  53. Goel S, Chen F, Cai WB (2014) Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small 10:631–645

    Article  Google Scholar 

  54. Xiao ZY (2014) CuS nanoparticles: clinically favorable materials for photothermal applications? Nanomedicine 9:373–375

    Article  Google Scholar 

  55. Tschakarov CG, Gospodinov GG, Bontschev Z (1982) Über den Mechanismus der mechanochemischen Synthese anorganischer Verbindungen. J Solid State Chem 41:244–252

    Article  Google Scholar 

  56. Ohtani T, Motoki M, Koh K, Ohshima K (1995) Synthesis of binary copper chalcogenides by mechanical alloying. Mater Res Bull 30:1495–1504

    Article  Google Scholar 

  57. Blachnik R, Muller A (2000) The formation of Cu2S from the elements I. Copper used in form of powders. Thermochim Acta 361:31–52

    Article  Google Scholar 

  58. Wang K, Tan GL (2010) Synthesis and optical properties of CuS nanocrystals by mechanical alloying process. Curr Nanosci 6:163–168

    Article  Google Scholar 

  59. Kristl M, Ban I, Gyergyek S (2013) Preparation of nanosized copper and cadmium chalcogenides by mechanochemical synthesis. Mater Manuf Processes 28:1009–1013

    Google Scholar 

  60. Ou Z, Li J (2014) Synergism of mechanical activation and sulfurization to recover copper from waste printed circuit boards. RSC Adv 4:51970–51976

    Article  Google Scholar 

  61. Li S, Ge ZH, Zhang BP et al (2016) Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity. Appl Surf Sci 384:272–278

    Article  Google Scholar 

  62. Baláž M, Zorkovská A, Urakaev F et al (2016) Ultrafast mechanochemical synthesis of copper sulfides. RSC Adv 6:87836–87842

    Article  Google Scholar 

  63. Liu XJ, Li B, Fu FF et al (2014) Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy. Dalton Trans 43:11709–11715

    Article  Google Scholar 

  64. Zhou M, Song SL, Zhao J, Tian M, Li C (2015) Theranostic CuS nanoparticles targeting folate receptors for PET image-guided photothermal therapy. J Mater Chem B 3:8939–8948

    Article  Google Scholar 

  65. Rusanov V, Chakurov C (1990) Percolation phenomena in explosive mechanochemical synthesis of some metal chalcogenides. J Solid State Chem 89:1–9

    Article  Google Scholar 

  66. Chakurov C, Rusanov V, Koichev J (1987) The effect of inert additives on the explosive mechanochemical synthesis of some metal chalcogenides. J Solid State Chem 71:522–529

    Article  Google Scholar 

  67. Takacs L (2002) Self-sustaining reactions induced by ball milling. Prog Mater Sci 47:355–414

    Article  Google Scholar 

  68. Takacs L (2010) In: Sopicka-Lizer M (ed) High-energy ball milling: mechanohemical processing of nanopowders. Woodhead Publishing Limited, Oxford

    Google Scholar 

  69. Takacs L (2014) Gradual and self-sustaining processes in the Sn–Zn–Se system. Acta Phys Pol A 126:1032–1039

    Article  Google Scholar 

  70. Takacs L (2014) Self-sustaining reactions as a tool to study mechanochemical activation. Faraday Discuss 170:251–265

    Article  Google Scholar 

  71. Avvakumov EG (1979) Methods in chemical processes activation. Nauka, Novosibirsk

    Google Scholar 

  72. Faita FL, Ersching K, Poffo CM et al (2014) Structural, thermal, magnetic and optical characterization of undoped nanocrystalline ZnS prepared by solid state reaction. J Alloys Compd 590:176–183

    Article  Google Scholar 

  73. Farooqi MMH, Srivastava RK (2014) Structural, optical and photoconductivity study of ZnS nanoparticles synthesized by a low temperature solid state reaction method. Mater Sci Semicond Process 20:61–67

    Article  Google Scholar 

  74. Trajić J, Kostić R, Romčević N et al (2015) Raman spectroscopy of ZnS quantum dots. J Alloys Compd 637:401–406

    Article  Google Scholar 

  75. Trajić J, Romčević M, Romčević N, Babić B, Matović B, Baláž P (2016) Far-infrared spectra of mesoporous ZnS nanoparticles. Opt Mater 57:225–230

    Article  Google Scholar 

  76. Ohtani T, Ikeda K, Hayashi Y, Fukui Y (2007) Mechanochemical preparation of palladium chalcogenides. Mater Res Bull 42:1930–1934

    Article  Google Scholar 

  77. Urakaev FK (2013) Simulation of the mechanically induced self-propagating reactions: heat source of “viscous flow” and mechanism of MSR in Zn–S system. Combust Sci Technol 185:1281–1294

    Article  Google Scholar 

  78. Liu XJ, Xu ZZ, Xiao H et al (2014) The effect of process control agents and ball to powder rations on the electrochemical characteristics of mechanically alloyed SnS2 anode materials. Powder Technol 259:117–124

    Article  Google Scholar 

  79. Tan Q, Li JF (2014) Thermoelectric properties of Sn–S bulk materials prepared by mechanical alloying and spark plasma sintering. J Electron Mater 43:2435–2439

    Article  Google Scholar 

  80. Wu ZZ, Wang DZ, Sun AK (2010) Preparation of MoS2 by a novel mechanochemical method. J Alloys Compd 492:L5–L7

    Article  Google Scholar 

  81. Wu ZZ, Wang DZ, Zan XQ, Sun AK (2010) Synthesis of WS2 nanosheets by a novel mechanical activation method. Mater Lett 64:856–858

    Article  Google Scholar 

  82. Abraham A, Zhong ZY, Liu RD et al (2016) Preparation, ignition, and combustion of Mg center dot S reactive nanocomposites. Combust Sci Technol 188:1345–1364

    Article  Google Scholar 

  83. Achimovičová M, Baláž P (2015) In: Ramirez M (ed) Milling fundamentals, processes and technologies. NOVA Science Publishers Inc., New York

    Google Scholar 

  84. Wang H, Du F (2006) Hydrothermal synthesis of ZnSe hollow microspheres. Cryst Res Technol 41:323–327

    Article  Google Scholar 

  85. Eliyas A, Achimovičová M, Kostova N, Zorkovská A, Baláž P (2012) Photocataytic activity of thin film of cadmium selenide for air decontamination by complete oxidation of ethylene. Nanosci Nanotechnol 12:28–32

    Google Scholar 

  86. Tan GL, Du JH, Zhang QJ (2009) Structural evolution and optical properties of CdSe nanocrystals prepared by mechanical alloying. J Alloys Compd 468:421–431

    Article  Google Scholar 

  87. Tan GL, Liu RH (2010) Preparation of pure CdSe nanocrystals through mechanical alloying. J Nanopart Res 12:605–614

    Article  Google Scholar 

  88. Ohtani T, Kusano Y, Ishimaru K, Morimoto T, Togano A, Yoshioka T (2015) Pre-milling effects on self-propagating reactions in mechanochemical synthesis of CdSe and ZnSe. Chem Lett 44:1234–1236

    Article  Google Scholar 

  89. Baltazar-Rodrigues J, de Lima JC, Campos CEM, Grandi TA (2009) Temperature effects on mechanically alloyed nanometric ZnSe powder. Powder Technol 189:70–73

    Article  Google Scholar 

  90. Gotor FJ, Achimovičová M, Real C, Baláž P (2013) Influence of the milling parameters on the mechanical work intensity in planetary mills. Powder Technol 233:1–7

    Article  Google Scholar 

  91. Sashchiuk A, Amirav L, Bashouti M, Krueger M, Sivan U, Lifshitz E (2004) PbSe nanocrystal assemblies: synthesis and structural, optical, and electrical characterization. Nano Lett 4:159–165

    Article  Google Scholar 

  92. Pejova B, Grozdanov I (2007) Chemical synthesis, structural and optical properties of quantum sized semiconducting tin(II) selenide in thin film form. Thin Solid Films 515:5203–5211

    Article  Google Scholar 

  93. Achimovičová M, Rečnik A, Daneu N, da Silva KL, Harvanová J (2011) Study of tin selenide mechanochemical synthesis. In: 11th international multidisciplinary scientific geoconference (SGEM 2011), vol II, p 745

  94. Achimovičová M, da Silva KL, Daneu N et al (2011) Structural and morphological study of mechanochemically synthesized tin diselenide. J Mater Chem 21:5873–5876

    Article  Google Scholar 

  95. Agarwal MK, Patel PD, Patel SS (1991) Growth of large size single-crystals of SnSe2 using a direct transport method. J Cryst Growth 110:553–558

    Article  Google Scholar 

  96. George J, Kumari CKV (1986) Optical, electrical and morphological-studies of SnSe2 crystals grown by physical vapor transport method. Cryst Res Technol 21:273–278

    Article  Google Scholar 

  97. Lee PA, Said G (1968) Optical properties of tin di-selenide single crystals. J Phys D Appl Phys 1:837–843

    Article  Google Scholar 

  98. El-Nahass MM (1992) Optical-properties of tin diselenide films. J Mater Sci 27:6597–6604.

    Article  Google Scholar 

  99. Achimovičová M, Gotor FJ, Real C, Daneu N (2012) Mechanochemical synthesis and characterization of nanocrystalline BiSe, Bi2Se3 semiconductors. J Mater Sci Mater Electron 23:1844–1850

    Article  Google Scholar 

  100. Liu FY, Wang B, Lai YQ, Li J, Zhang ZA, Liu YX (2010) Electrodeposition of cobalt selenide thin films. J Electrochem Soc 157:D523–D527

    Article  Google Scholar 

  101. Kristl M, Gyergyek S, Srt N, Ban I (2016) Mechanochemical route for the preparation of nanosized aluminium and gallium sulfide and selenide. Mater Manuf Processes 31:1608–1612

    Article  Google Scholar 

  102. Campos CEM, de Lima JC, Grandi TA, Souza SM, Pizani PS (2007) Age-induced phase transitions on mechanically alloyed amorphous GaSe. Solid State Commun 142:270–275

    Article  Google Scholar 

  103. de Souza SM, de Lima JC, Campos CEM, Grandi TA, Triches DM (2008) Ageing-induced structural evolution of mechanically alloyed Ga40Se60. J Phys Condens Matter 20

  104. Nunes RM, Campos CEM, Drago V, Grandi TA, de Lima JC (2010) Structural stability of mechanically alloyed TM25Se75 (TM = Fe, Co and Ni). J Non-Cryst Solids 356:1145–1148

    Article  Google Scholar 

  105. Zhang SN, Liu JX, Feng JQ et al (2015) Fabrication mechanism of FeSe superconductors milling aided sintering process with high-energy ball. Mater Chem Phys 163:587–593

    Article  Google Scholar 

  106. Zhang S, Liu J, Feng JX, Li C, Ma XX, Zhang P (2015) Optimization of FeSe superconductors with the high-energy ball milling aided sintering process. J Materiomics 1:118–123

    Article  Google Scholar 

  107. Hussain RA, Badshah A, Lal B (2016) Fabrication, characterization and applications of iron selenide. J Solid State Chem 243:179–189

    Article  Google Scholar 

  108. Achimovičová M, Daneu N, Dutková E, Zorkovská A (2017) Mechanochemically synthesized cobalt monoselenide: structural characterization and optical properties. Appl Phys A 123:154

    Article  Google Scholar 

  109. Tan GL, Hommerich U, Temple D, Wu NQ, Zheng JG, Loutts G (2003) Synthesis and optical characterization of CdTe nanocrystals prepared by ball milling process. Scr Mater 48:1469–1474

    Article  Google Scholar 

  110. Tan GL, Yang Q, Hommerich U, Seo JT, Temple D (2004) Linear and non-linear optical properties of capped CdTe nanocrystals prepared by mechanical alloying. Opt Mater 27:579–584

    Article  Google Scholar 

  111. Humphry-Baker SA, Garroni S, Delogu F, Schuh CA (2016) Melt-driven mechanochemical phase transformations in moderately exothermic powder mixtures. Nat Mater 15:1280–1286

    Article  Google Scholar 

  112. Campos CEM, Ersching K, de Lima JC, Grandi TA, Hohn H, Pizani PS (2008) Influence of minor oxidation of the precursor powders to form nanocrystalline CdTe by mechanical alloying. J Alloys Compd 466:80–86

    Article  Google Scholar 

  113. Campos CEM, de Lima JC, Grandi TA, Hohn H (2008) Synthesis of nanocrystalline zinc blende ZnTe by mechanical alloying. J Non-Cryst Solids 354:3503–3506

    Article  Google Scholar 

  114. Campos CEM (2014) Solid state synthesis and characterization of NiTe nanocrystals. J Nano Res 29:35–39

    Article  Google Scholar 

  115. Godočíková E, Baláž P, Gock E, Choi WS, Kim BS (2006) Mechanochemical synthesis of the nanocrystalline semiconductors in an industrial mill. Powder Technol 164:147–152

    Article  Google Scholar 

  116. Tolia JV, Chakraborty M, Murthy ZVP (2012) Mechanochemical synthesis and characterization of group II–VI semiconductor nanoparticles. Part Sci Technol 30:533–542

    Article  Google Scholar 

  117. Zan GT, Wu QS (2016) Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv Mater 28:2099–2147

    Article  Google Scholar 

  118. Huang JL, Lin LQ, Sun DH, Chen HM, Yang DP, Li QB (2015) Bio-inspired synthesis of metal nanomaterials and applications. Chem Soc Rev 44:6330–6374

    Article  Google Scholar 

  119. Zhou H, Fan TX, Li XF et al (2009) Bio-inspired bottom-up assembly of diatom-templated ordered porous metal chalcogenide meso/nanostructures. Eur J Inorg Chem 211–215

  120. Rao MD, Pennathur G (2016) Facile bio-inspired synthesis of zinc sulfide nanoparticles using Chlamydomonas reinhardtii cell free extract: optimization, characterization and optical properties. Green Process Synth 5:379–388

    Google Scholar 

  121. Shen LM, Bao NZ, Prevelige PE, Gupta A (2010) Fabrication of ordered nanostructures of sulfide nanocrystal assemblies over self-assembled genetically engineered P22 coat protein. JACS 132:17354–17357

    Article  Google Scholar 

  122. Lu Y, Fong E (2016) Biomass-mediated synthesis of carbon-supported nanostructured metal sulfides for ultra-high performance lithium-ion batteries. J Mater Chem A 4:2738–2745

    Article  Google Scholar 

  123. Zhong RZ, Peng C, Chen L et al (2016) Egg white-mediated green synthesis of CuS quantum dots as a biocompatible and efficient 980 nm laser-driven photothermal agent. RSC Adv 6:40480–40488

    Article  Google Scholar 

  124. Su H, Han J, Wang N, Dong Q, Zhang D, Zhang C (2008) In situ synthesis of lead sulfide nanoclusters on eggshell membrane fibers by an ambient bio-inspired technique. Smart Mater Struct 17:art. no. 015045

  125. Pawar V, Kumar AR, Zinjarde S, Gosavi S (2013) Bioinspired inimitable cadmium telluride quantum dots for bioimaging purposes. J Nanosci Nanotechnol 13:3826–3831

    Article  Google Scholar 

  126. Baláž M, Baláž P, Sayagués MJ, Zorkovská A (2013) Bio-inspired mechanochemical synthesis of semiconductor nanomaterial using eggshell membrane. Mater Sci Semicond Process 16:1899–1903

    Article  Google Scholar 

  127. Baláž M (2014) Eggshell membrane biomaterial as a platform for the applications in materials science. Acta Biomater 10:3827–3843

    Article  Google Scholar 

  128. Su HL, Wang N, Dong Q, Zhang D (2006) Incubating lead selenide nanoclusters and nanocubes on the eggshell membrane at room temperature. J Membr Sci 283:7–12

    Article  Google Scholar 

  129. Kodali VK, Gannon SA, Paramasivam S, Raje S, Polenova T, Thorpe C (2011) A novel disulfide-rich protein motif from avian eggshell membranes. PLoS ONE 6:art. no. e18187

  130. Green MA, Emery K, King DL, Igari S, Warta W (2002) Solar cell efficiency tables (version 20). Prog Photovolt 10:355–360

    Article  Google Scholar 

  131. Djellal L, Bouguelia A, Trari M (2008) Physical and photoelectrochemical properties of p-CuInSe2 bulk material. Mater Chem Phys 109:99–104

    Article  Google Scholar 

  132. Vanalakar SA, Agawane GL, Shin SW et al (2015) Non-vacuum mechanochemical route to the synthesis of Cu2SnS3 nano-ink for solar cell applications. Acta Mater 85:314–321

    Article  Google Scholar 

  133. Dutková E, Sayagués MJ, Briančin J et al (2016) Synthesis and characterization of CuInS2 nanocrystalline semiconductor prepared by high-energy milling. J Mater Sci 51:1978–1984. doi:10.1007/s10853-015-9507-x

    Article  Google Scholar 

  134. Li DS, Zou Y, Yang DR (2012) Controlled synthesis of luminescent CuInS2 nanocrystals and their optical properties. J Lumin 132:313–317

    Article  Google Scholar 

  135. Wu SM, Xue YZ, Zhou LM, Liu X, Xu DY (2014) Structure and morphology evolution in mechanochemical processed CuInS2 powder. J Alloys Compd 600:96–100

    Article  Google Scholar 

  136. Kim KH, Lee JK, Alphonse A et al (2013) Preparation of precursor particles by cryogenic mechanical milling for the deposition of CuInS2 thin films. Mater Sci Semicond Process 16:226–230

    Article  Google Scholar 

  137. Li JH, Tan Q, Li JF (2013) Synthesis and property evaluation of CuFeS2−x as earth-abundant and environmentally-friendly thermoelectric materials. J Alloys Compd 551:143–149

    Article  Google Scholar 

  138. Shawky M, Shenouda A, El-sShreafy E, Ibrahim IA (2015) Synthesis, characterization and performance of Cu2SnS3 for solar cell application. Int J Sci Eng Res 6:1447–1453

    Google Scholar 

  139. Dutková E, Sayagués MJ, Kováč J et al (2016) Mechanochemically synthesized nanocrystalline ternary CuInSe2 chalcogenide semiconductor. Mater Lett 173:182–186

    Article  Google Scholar 

  140. Rincon C, Ramirez FJ (1992) Lattice-vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry. J Appl Phys 72:4321–4324

    Article  Google Scholar 

  141. Eisener B, Wagner M, Wolf D, Muller G (1999) Study of the intrinsic defects in solution grown CuInSe2 crystals depending on the path of crystallization. J Cryst Growth 198:321–324

    Article  Google Scholar 

  142. Sabet M, Salavati-Niasari M, Ghanbari D, Amiri O, Mir N, Dadkhah M (2014) Synthesis and characterization of CuInSe2 nanocrystals via facile microwave approach and study of their behavior in solar cell. Mater Sci Semicond Process 25:98–105

    Article  Google Scholar 

  143. Chen K, Du BL, Bonini N, Weber C, Yan HX, Reece MJ (2016) Theory-guided synthesis of an eco-friendly and low-cost copper based sulfide thermoelectric material. J Phys Chem C 120:27135–27140

    Article  Google Scholar 

  144. Zhang RZ, Chen K, Du B, Reece MJ (2017) Screening for Cu–S based thermoelectric materials using crystal structure features. J Mater Chem A 5:5013–5019

    Article  Google Scholar 

  145. Du BL, Zhang RZ, Chen K, Mahajan A, Reece MJ (2017) The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS2. J Mater Chem A 5:3249–3259

    Article  Google Scholar 

  146. Hsu W, Sutter-Fella CM, Hettick M et al (2015) Electron-selective TiO2 contact for Cu(In,Ga)Se-2 solar cells. Sci Rep 5

  147. Guo Q, Ford GM, Yang WC et al (2010) Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. JACS 132:17384–17386

    Article  Google Scholar 

  148. Delbos S (2012) Kesterite thin films for photovoltaics: a review. EPJ Photovolt 3:art. no. 35004

  149. Song XB, Ji X, Li M, Lin WD, Luo X, Zhang H (2014) A review on development prospect of CZTS based thin film solar cells. Int J Photoenergy:art. no. 613173

  150. Scragg J (2011) Copper zinc tin sulfide thin films for photovoltaics. Springer, Berlin Heidelberg

    Book  Google Scholar 

  151. Siebentritt S, Schorr S (2012) Kesterites—a challenging material for solar cells. Prog Photovolt 20:512–519

    Article  Google Scholar 

  152. Ito K, Nakazawa T (1988) Electrical and optical-properties of stannite-type quaternary semiconductor thin-films. Jpn J Appl Phys Part 1 27:2094–2097

    Article  Google Scholar 

  153. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (version 45). Prog Photovolt 23:1–9

    Article  Google Scholar 

  154. Pareek D, Balasubramaniam KR, Sharma P (2016) Reaction pathway for synthesis of Cu2ZnSn(S/Se)4 via mechano-chemical route and annealing studies. J Mater Sci Mater Electron 28:1199–1210

    Article  Google Scholar 

  155. Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC (2016) Photovoltaic materials: present efficiencies and future challenges. Science 352:307

    Article  Google Scholar 

  156. Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302–1317

    Article  Google Scholar 

  157. Mokurala K, Bhargava P, Mallick S (2014) Single step synthesis of chalcogenide nanoparticles Cu2ZnSnS4, Cu2FeSnS4 by thermal decomposition of metal precursors. Mater Chem Phys 147:371–374

    Article  Google Scholar 

  158. Shyju TS, Anandhi S, Suriakarthick R, Gopalakrishnan R, Kuppusami P (2015) Mechanosynthesis, deposition and characterization of CZTS and CZTSe materials for solar cell applications. J Solid State Chem 227:165–177

    Article  Google Scholar 

  159. Park BI, Hwang Y, Lee SY et al (2014) Solvent-free synthesis of Cu2ZnSnS4 nanocrystals: a facile, green, up-scalable route for low cost photovoltaic cells. Nanoscale 6:11703–11711

    Article  Google Scholar 

  160. Wang Y, Gong H (2011) Cu2ZnSnS4 synthesized through a green and economic process. J Alloys Compd 509:9627–9630

    Article  Google Scholar 

  161. Zhou Y, Xi SQ, Sun CF, Wu HJ (2016) Facile synthesis of Cu2ZnSnS4 powders by mechanical alloying and annealing. Mater Lett 169:176–179

    Article  Google Scholar 

  162. Pani B, Pillai S, Singh UP (2016) Kesterite based thin film absorber layers from ball milled precursors. J Mater Sci Mater Electron 27:12412–12417

    Article  Google Scholar 

  163. Pareek D, Balasubramaniam KR, Sharma P (2016) Synthesis and characterization of kesterite Cu2ZnSnTe4 via ball-milling of elemental powder precursors. RSC Adv 6:68754–68759

    Article  Google Scholar 

  164. Pareek D, Balasubramaniam KR, Sharma P (2015) Synthesis and characterization of bulk Cu2ZnSnX4 (X: S, Se) via thermodynamically supported mechano-chemical process. Mater Charact 103:42–49

    Article  Google Scholar 

  165. Ritscher A, Just J, Dolotko O, Schorr S, Lerch M (2016) A mechanochemical route to single phase Cu2ZnSnS4 powder. J Alloys Compd 670:289–296

    Article  Google Scholar 

  166. Ritscher A, Hoelzel M, Lerch M (2016) The order–disorder transition in Cu2ZnSnS4—a neutron scattering investigation. J Solid State Chem 238:68–73

    Article  Google Scholar 

  167. Ritscher A, Schlosser M, Pfitzner A, Lerch M (2016) Study of the mechanochemical process to crystalline Cu2ZnSnS4 powder. Mater Res Bull 84:162–167

    Article  Google Scholar 

  168. Ma RX, Yang F, Li SN et al (2016) Fabrication of Cu2ZnSn(S, Se)(4)(CZTSSe) absorber films based on solid-phase synthesis and blade coating processes. Appl Surf Sci 368:8–15

    Article  Google Scholar 

  169. Yang F, Ma RX, Zhao WS, Zhang XY, Li X (2016) Fabrication of Cu2ZnSnS4 (CZTS) absorber films based on different compound targets. J Alloys Compd 689:849–856

    Article  Google Scholar 

  170. Ritscher A, Franz A, Schorr S, Lerch M (2016) Off-stoichiometric CZTS: Neutron scattering investigations on mechanochemically synthesized powders. J Alloys Compd 689:271–277

    Article  Google Scholar 

  171. Tiwari A, Dhoble SJ (2016) Stabilization of ZnS nanoparticles by polymeric matrices: syntheses, optical properties and recent applications. RSC Adv 6:64400–64420

    Article  Google Scholar 

  172. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  Google Scholar 

  173. Bujňáková Z, Dutková E, Zorkovská A et al (2017) Mechanochemical synthesis and in viro studies of chitosan-coated InAs/ZnS mixed nanocrystals. J Mater Sci 52:721–735. doi:10.1007/s10853-016-0366-x

    Article  Google Scholar 

  174. Bujňáková Z, Baláž P, Čaplovičová M, Čaplovič L, Kováč J, Zorkovská A (2015) Mechanochemical synthesis of InAs nanocrystals. Mater Lett 159:474–477

    Article  Google Scholar 

  175. Bujňáková Z, Baláž M, Zdurienčíková M et al (2017) Preparation, properties and anticancer effects of mixed As4S4/ZnS nanoparticles capped by Poloxamer 407. Mater Sci Eng C 71:541–551

    Article  Google Scholar 

  176. Tiwari JP, Shahi K (2007) Mechanochemically synthesized Ag2S–Sb2S3 amorphous fast ionic conductors. Mater Sci Eng B 141:8–15

    Article  Google Scholar 

  177. Boldyrev VV, Boldyreva EV (2010) In: Delogu F, Mulas G (eds) Experimental and theoretical studies in modern mechanochemistry. Transworld Research Network, Trivandrum

    Google Scholar 

  178. Suryanarayana C, Ivanov E, Boldyrev VV (2001) The science and technology of mechanical alloying. Mater Sci Eng A 304–306:151–158

    Article  Google Scholar 

  179. Filio JM, Kasai E, Ymetsu Y, Saito F, Chung HS (1994) Grinding of Ep dust and its effect on solubility of metal-compounds in water. J Chem Eng Jpn 27:492–497

    Article  Google Scholar 

  180. Rogach AL (2008) Semiconductor nanocrystal quantum dots. Springer, New York

    Book  Google Scholar 

  181. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J Phys Chem 100:468–471

    Article  Google Scholar 

  182. Smyder JA, Krauss TD (2011) Coming attractions for semiconductor quantum dots. Mater Today 14:382–387

    Article  Google Scholar 

  183. Chen HM, Zhen ZP, Todd T, Chu PK, Xie J (2013) Nanoparticles for improving cancer diagnosis. Mater Sci Eng R 74:35–69

    Article  Google Scholar 

  184. Nam J, Won N, Bang J et al (2013) Surface engineering of inorganic nanoparticles for imaging and therapy. Adv Drug Del Rev 65:622–648

    Article  Google Scholar 

  185. Geszke-Moritz M, Moritz M (2013) Quantum dots as versatile probes in medical sciences: synthesis, modification and properties. Mater Sci Eng C 33:1008–1021

    Article  Google Scholar 

  186. Wageh S, Ling ZS, Xu-Rong X (2003) Growth and optical properties of colloidal ZnS nanoparticles. J Cryst Growth 255:332–337

    Article  Google Scholar 

  187. Chen R, Li DH, Liu B et al (2010) Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature. Nano Lett 10:4956–4961

    Article  Google Scholar 

  188. Mishra PR, Al Shaal L, Muller RH, Keck CM (2009) Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm 371:182–189

    Article  Google Scholar 

  189. Xu Y, Zhao WW, Xu R, Shi YM, Zhang B (2013) Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem Commun 49:9803–9805

    Article  Google Scholar 

  190. Liu J, Lu YF, Wu Q, Goyer RA, Waalkes MP (2008) Mineral arsenicals in traditional medicines: orpiment, realgar, and arsenolite. J Pharmacol Exp Ther 326:363–368

    Article  Google Scholar 

  191. Dilda PJ, Hogg PJ (2007) Arsenical-based cancer drugs. Cancer Treat Rev 33:542–564

    Article  Google Scholar 

  192. Baláž P, Sedlák J (2010) Arsenic in cancer treatment: challenges for application of realgar nanoparticles (a minireview). Toxins 2:1568–1581

    Article  Google Scholar 

  193. Baláž P, Nguyen AV, Fabián M et al (2011) Properties of arsenic sulphide As4S4 nanoparticles prepared by high-energy milling. Powder Technol 211:232–236

    Article  Google Scholar 

  194. Baláž P, Fabián M, Pastorek M, Cholujová D, Sedlák J (2009) Mechanochemical preparation and anticancer effect of realgar As4S4 nanoparticles. Mater Lett 63:1542–1544

    Article  Google Scholar 

  195. Bujňáková Z, Baláž P, Makreski P et al (2015) Arsenic sulfide nanoparticles prepared by milling: properties, free-volume characterization, and anti-cancer effects. J Mater Sci 50:1973–1985. doi:10.1007/s10853-014-8763-5

    Article  Google Scholar 

  196. Harder J (2015) Energy trend: advances in fine grinding and classification. Aufbereitungs-Technik/Miner Process 56:42–55

    Google Scholar 

  197. Harder J (2012) Improved yields-trends in the grinding of non-ferrous metal ores. Aufbereitungs-Technik/Miner Process 7–8:49–62

    Google Scholar 

  198. www.isamill.com (2017). Accessed 22 Jan

  199. Gock E, Vogt V, Baláž P (2008) In: Duo WD, Yao SC, Liang WF, Zhang LC, Long H (eds) Proceedings of the XXIV. International Mineral Processing Congress Science Press, Beijing

    Google Scholar 

  200. Gock E, Kurrer KE (1999) Eccentric vibratory mills—theory and practice. Powder Technol 105:302–310

    Article  Google Scholar 

  201. Achimovičová M, Baláž P, Ohtani T et al (2011) Characterization of mechanochemically synthesized ZnSe in a laboratory and an industrial mill. Solid State Ion 192:632–637

    Article  Google Scholar 

  202. Achimovičová M, Baláž P, Ďurišin J et al (2011) Mechanochemical synthesis of nanocrystalline lead selenide: industrial approach. Int J Mater Res 102:441–445

    Article  Google Scholar 

Download references

Acknowledgements

The present paper would not exist without the financial support of the Slovak Research and Development Agency under the Contract No. APVV-14-0103. The support of Slovak Grant Agency VEGA (Project 2/0027/14) and of German Federal Ministry of Education and Research (Project IB-COMSTRUC-010) is also gratefully acknowledged. The authors would like to thank Dr. N. Daneu and Dr. A. Feldhoff for the unpublished TEM images of presented metal selenides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Baláž.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dedicated to the memory of Professor Eberhard Gock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baláž, P., Baláž, M., Achimovičová, M. et al. Chalcogenide mechanochemistry in materials science: insight into synthesis and applications (a review). J Mater Sci 52, 11851–11890 (2017). https://doi.org/10.1007/s10853-017-1174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1174-7

Keywords

Navigation