Skip to main content
Log in

Quantification of germanium-induced suppression of interstitial injection during oxidation of silicon

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The oxidation of silicon is known to inject interstitials, and the presence of silicon–germanium (SiGe) alloys at the Si/SiO2 interface during oxidation is known to suppress the injection of silicon self-interstitials. This study uses a layer of implantation-induced dislocation loops to measure interstitial injection as a function of SiGe layer thickness. The loops were introduced by a 50 keV 2 × 1014 cm−2 P+ room-temperature implantation and thermal annealing. Germanium was subsequently introduced via a second implant at 3 keV Ge+ over a range of doses between 1.7 × 1014 cm−2 and 1.4 × 1015 cm−2. Results show that upon oxidizing at 850 °C for 3 h or 900 °C for 70 min to condense the germanium at the Si/SiO2 interface, where if forms a Si0.5Ge0.5 alloy. Upon subsequent oxidations of 850 °C for 6 h or 900 °C for 2 h, partial suppression of interstitial injection can be observed for sub-monolayer doses of germanium, and more than three monolayers of Si0.5Ge0.5 (1.4 × 1015 cm−2) are necessary to suppress interstitial injection below the detection limit during oxidation. These results show that low-energy implantation of germanium can be used to eliminate or modulate injection of oxidation-induced interstitials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. LeGoues FK, Rosenberg R, Meyerson BS (1989) Kinetics and mechanism of oxidation of SiGe: dry versus wet oxidation. Appl Phys Lett 54:644–654. doi:10.1063/1.100905

    Article  Google Scholar 

  2. Jain SC, Balk P (1993) Preparation and properties of the GeSi-oxide system. Thin Solid Films 223:348–357. doi:10.1016/0040-6090(93)90543-x

    Article  Google Scholar 

  3. Hu S (1994) Nonequilibrium point defects and diffusion in silicon. Mater Sci Eng R Rep 13:105–192. doi:10.1016/0927-796X(94)90009-4

    Article  Google Scholar 

  4. Hu SM (1974) Formation of stacking faults and enhanced diffusion in the oxidation of silicon. J Appl Phys 45:1567–1568. doi:10.1063/1.1663459

    Article  Google Scholar 

  5. Delugas P, Fiorentini V (2004) Energetics of transient enhanced diffusion of boron in Ge and SiGe. Phys Rev B 69:085203–085205. doi:10.1103/PhysRevB.69.085203

    Article  Google Scholar 

  6. Tiller WA (1981) On the kinetics of the thermal oxidation of silicon III. Coupling with other key phenomena. J Electrochem Soc 128:689–697. doi:10.1149/1.2127482

    Article  Google Scholar 

  7. Fathy D, Holland OW, White CW (1987) Formation of epitaxial layers of Ge on Si substrates by Ge implantation and oxidation. Appl Phys Lett 51:1337–1344. doi:10.1063/1.98671

    Article  Google Scholar 

  8. Holland OW, White CW, Fathy D (1987) Novel oxidation process in Ge + -implanted Si and its effect on oxidation kinetics. Appl Phys Lett 51:520–524. doi:10.1063/1.98385

    Article  Google Scholar 

  9. LeGoues FK, Rosenberg R, Meyerson BS (1989) Dopant redistribution during oxidation of SiGe. Appl Phys Lett 54:751–754. doi:10.1063/1.100882

    Article  Google Scholar 

  10. Napolitani E, Di Marino M, De Salvador D et al (2005) Silicon interstitial injection during dry oxidation of SiGe/Si layers. J Appl Phys 97:036106–036113. doi:10.1063/1.1844606

    Article  Google Scholar 

  11. Meyerson BS (1986) Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition. Appl Phys Lett 48:797. doi:10.1063/1.96673

    Article  Google Scholar 

  12. Harame DL, Meyerson BS (2001) The early history of IBM’s SiGe mixed signal technology. IEEE Trans Electron Devices 48:2555–2567. doi:10.1109/16.960383

    Article  Google Scholar 

  13. Claverie A, Colombeau B, de Mauduit B et al (2003) Extended defects in shallow implants. Appl Phys A 76:1025–1033. doi:10.1007/s00339-002-1944-0

    Article  Google Scholar 

  14. Martin TP, Aldridge HL Jr, Jones KS, Camillo-Castillo RA (2017) Use of a buried loop layer as a detector of interstitial flux during oxidation of SiGe heterostructures. J Vac Sci Technol, A 35:021101–021105. doi:10.1116/1.4972516

    Article  Google Scholar 

  15. Long E, Azarov A, Kløw F et al (2012) Ge redistribution in SiO2/SiGe structures under thermal oxidation: dynamics and predictions. J Appl Phys 111:024308–024310. doi:10.1063/1.3677987

    Article  Google Scholar 

  16. Hellberg PE, Zhang SL, d’Heurle FM, Petersson CS (1997) Oxidation of silicon–germanium alloys. I. An experimental study. J Appl Phys 82:5773–5777. doi:10.1063/1.366443

    Article  Google Scholar 

  17. Listebarger JK, Jones KS, Slinkman JA (1993) Use of type II (end of range) damage as “‘detectors’” for quantifying interstitial fluxes in ion-implanted silicon. J Appl Phys 73:4815–4816. doi:10.1063/1.353847

    Article  Google Scholar 

  18. Jones KS, Robinson HG, Listebarger J et al (1995) Studies of point defect/dislocation loop interaction processes in silicon. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 96:196–201. doi:10.1016/0168-583x(94)00482-x

    Article  Google Scholar 

  19. Ratib O, Rosset A (2006) Open-source software in medical imaging: development of OsiriX. Int J CARS 1:187–196. doi:10.1007/s11548-006-0056-2

    Article  Google Scholar 

  20. Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216. doi:10.1007/s10278-004-1014-6

    Article  Google Scholar 

  21. Aqua JN, Berbezier I, Favre L et al (2013) Growth and self-organization of SiGe nanostructures. Phys Rep 522:59–189. doi:10.1016/j.physrep.2012.09.006

    Article  Google Scholar 

  22. Kaplan WD, Chatain D, Wynblatt P, Carter WC (2013) A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting. J Mater Sci 48:5681–5717. doi:10.1007/s10853-013-7462-y

    Article  Google Scholar 

  23. Watanabe H, Baba T, Ichikawa M (2000) Mechanism of layer-by-layer oxidation of Si(001) surfaces by two-dimensional oxide-island nucleation at SiO 2/Si interfaces. Jpn J Appl Phys 39:2015–2020. doi:10.1143/jjap.39.2015

    Article  Google Scholar 

  24. Elliman RG, Kim TH, Shalav A, Fletcher NH (2012) Controlled lateral growth of silica nanowires and coaxial nanowire heterostructures. J Phys Chem C 116:3329–3333. doi:10.1021/jp208484y

    Article  Google Scholar 

  25. Uematsu M, Gunji M, Tsuchiya M, Itoh KM (2007) Enhanced oxygen exchange near the oxide/silicon interface during silicon thermal oxidation. Thin Solid Films 515:6596–6600. doi:10.1016/j.tsf.2006.11.052

    Article  Google Scholar 

  26. Kageshima H, Uematsu M, Shiraishi K (2001) Theory of thermal Si oxide growth rate taking into account interfacial Si emission effects. Microelectron Eng 59:301–309. doi:10.1016/S0167-9317(01)00614-1

    Article  Google Scholar 

  27. Estève A, Rouhani MD, Faurous P, Esteve D (2000) Modeling of the silicon (100) thermal oxidation: from quantum to macroscopic formulation. Mater Sci Semicond Process 3:47–57. doi:10.1016/s1369-8001(00)00009-3

    Article  Google Scholar 

  28. Reifsnider K, Rabbi F, Vadlamudi V et al (2017) Critical path-driven property and performance transitions in heterogeneous microstructures. J Mater Sci 52:4796–4809. doi:10.1007/s10853-017-0791-5

    Article  Google Scholar 

Download references

Acknowledgements

TEM work was performed at the National High Magnetic Field Laboratory, which is supported by NSF DMR-1157490 and the State of Florida. As well as the University of Florida Research Services Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Martin.

Ethics declarations

Conflict of interest

The authors of this work declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, T.P., Jones, K.S., Camillo-Castillo, R.A. et al. Quantification of germanium-induced suppression of interstitial injection during oxidation of silicon. J Mater Sci 52, 10387–10392 (2017). https://doi.org/10.1007/s10853-017-1196-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1196-1

Keywords

Navigation