Skip to main content
Log in

Surface modification of hexagonal boron nitride nanomaterials: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hexagonal boron nitride (h-BN) nanomaterials, such as boron nitride nanotubes, boron nitride nanofibers, and boron nitride nanosheets, are among the most promising inorganic nanomaterials in recent years. Their unique properties, including high mechanical stiffness, wide band gap, excellent thermal conductivity, and thermal stability, suggest many potential applications in various engineering fields. In particular, h-BN nanomaterials have been widely used as functional fillers to fabricate high-performance polymer nanocomposites. Like other nanomaterials, prior to their utilization in nanocomposites, surface modification of h-BNs is often necessary in order to prevent their strong tendency to aggregate, and to improve their dispersion and interfacial properties in polymer nanocomposites. However, the high chemical inertness and resistance to oxidation of h-BNs make it rather difficult to functionalize h-BNs. The methods frequently used to oxidize graphitic carbon nanomaterials are not quite successful on h-BNs. Therefore, many novel approaches have been studied to modify h-BN nanostructures. In this review, different surface modification strategies were discussed including various covalent and non-covalent surface modification strategies through wet or dry chemical routes. Meanwhile, the effects of these surface modification methods on the resulting material structures and properties were also reviewed. At last, a number of theoretical studies on the reactivity of h-BNs with different chemical agents have been conducted to explore new surface modification routes, which were also addressed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reprinted from [12]

Figure 2

a is reprinted from [38], with the permission of John Wiley and Sons. b is reprinted (adapted) with permission from [39]. Copyright (1995) American Chemical Society

Figure 3

Reprinted from [40], with the permission of AIP Publishing

Figure 4

Reproduced from [44] with permission of The Royal Society of Chemistry

Figure 5

Reprinted from [10], with permission of John Wiley and Sons

Figure 6

Reprinted (adapted) with permission from [50]. Copyright (2004) American Chemical Society

Figure 7

Reprinted (adapted) with permission from [52]. Copyright (2000) American Chemical Society

Figure 8

Reprinted from [53], with permission of John Wiley and Sons

Figure 9

Reprinted from [65], with permission of John Wiley and Sons

Scheme 1
Figure 10

a, b is reprinted (adapted) with permission from [74]. Copyright (2012) American Chemical Society. c, d Reprinted from [75], with permission of John Wiley and Sons

Scheme 2
Scheme 3
Figure 11

Reprinted from [79], with permission from Elsevier

Figure 12

Reprinted from [36], with permission of John Wiley and Sons

Figure 13

Reprinted from [69], Copyright (2012), with permission from Elsevier

Scheme 4
Figure 14

Reprinted (adapted) with permission from [15]. Copyright (2010) American Chemical Society

Figure 15

Reprinted from [102], by permission of Taylor & Francis

Figure 16

Reproduced (“Adapted” or “in part”) from [81] with permission of The Royal Society of Chemistry

Figure 17

Reprinted (adapted) with permission from [112]. Copyright (2015) American Chemical Society

Figure 18

Reproduced (“Adapted” or “in part”) from [110] with permission of The Royal Society of Chemistry

Scheme 5
Figure 19

Reproduced (“Adapted” or “in part”) from [96] with permission of The Royal Society of Chemistry

Scheme 6
Figure 20

Reprinted from [114], Copyright (2015), with permission from Elsevier

Figure 21

Reprinted from [77], Copyright (2016), with permission from Elsevier

Figure 22

Reprinted from [68], Copyright (2016), with permission from Elsevier

Figure 23

Reprinted from [132], with permission of John Wiley and Sons

Figure 24

Reprinted (adapted) with permission from [34]. Copyright (2014) American Chemical Society

Scheme 7
Figure 25

Reprinted from [136], with permission of Institute of Physics

Figure 26

a is reprinted (adapted) with permission from [85]. Copyright (2010) American Chemical Society. bf are reprinted from [141]

Figure 27

Reprinted from [142] with permission of Springer

Figure 28

Reprinted from [146] with permission of Springer

Figure 29

Reprinted (adapted) with permission from [150]. Copyright (2006) American Chemical Society

Figure 30

Reprinted from [167], Copyright (2016), with permission from Elsevier

Figure 31

Reprinted from [171], with the permission of AIP Publishing

Figure 32

Reprinted figure with permission from [174]. Copyright (2012) by the American Physical Society

Figure 33

Reprinted by permission from Macmillan Publishers Ltd: Scientific Reports [176], copyright (2013)

Similar content being viewed by others

References

  1. Dobrzhinetskaya LF, Wirth R, Yang J, Green HW, Hutcheon ID, Weber PK, Grew ES (2014) Am Miner 99:764–772

    Article  Google Scholar 

  2. Haubner R, Wilhelm M, Weissenbacher R, Lux B (2002) Struct Bond 102:1–45

    Article  Google Scholar 

  3. Pierson HO (1975) J Compost Materials 9:228–240

    Article  Google Scholar 

  4. Glavin IR et al (2016) Adv Funct Mater 26:2640–2647

    Article  Google Scholar 

  5. Pakdel A, Bando Y, Golberg D (2014) Chem Soc Rev 43:934–959

    Article  Google Scholar 

  6. Orellana W, Chacham H (2001) Phys Rev B 63:125205

    Article  Google Scholar 

  7. Chopra NG, Luyken RJ, Cherrey K, Crespi VH (1995) Science 269:966–967

    Article  Google Scholar 

  8. Chen Z-G et al (2008) ACS Nano 2:2183–2191

    Article  Google Scholar 

  9. Qiu Y, Yu J, Yin J, Tan C, Zhou X, Bai X, Wang E (2009) Nanotechnology 20:345603

    Article  Google Scholar 

  10. Zhang H, Yu J, Chen Y, Gerald JF (2006) J Am Ceram Soc 89:675–679

    Article  Google Scholar 

  11. Stephan O, Bando Y, Loiseau A, Willaime F, Shramchenko N, Tamiya T, Sato T (1998) Appl Phys A 67:107–111

    Google Scholar 

  12. Benjah-bmm27 2007 In the public domain

  13. Corso M, Auwarter W, Muntwiler M, Tamai A, Greber T, Osterwalder J (2004) Science 303:217–220

    Article  Google Scholar 

  14. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) ACS Nano 4:2979–2993

    Article  Google Scholar 

  15. Lin Y, Williams TV, Connell JW (2010) J Phys Chem Lett 1:277–283

    Article  Google Scholar 

  16. Ma P, Spencer JT (2015) J Mater Sci 50:313–323. doi:10.1007/s10853-014-8590-8

    Article  Google Scholar 

  17. Ci L et al (2010) Nat Mater 9:430–435

    Article  Google Scholar 

  18. Dean CR et al (2010) Nat Nanotechnol 5:722–726

    Article  Google Scholar 

  19. Watanabe K, Taniguchi T, Kanda H (2004) Nat Mater 3:404–409

    Article  Google Scholar 

  20. Elumalai G, Noguchi H, Uosaki K (2014) Phys Chem Chem Phys 16:13755–13761

    Article  Google Scholar 

  21. Cho H-B, Tokoi Y, Tanaka S, Suematsu H, Suzuki T, Jiang W, Niihara K, Nakayama T (2011) Compos Sci Technol 71:1046–1052

    Article  Google Scholar 

  22. Wang X, Pakdel A, Zhang J, Weng Q, Zhai T, Zhi C, Golberg D, Bando Y (2012) Nanoscale Res Lett 7(1):662–668

    Article  Google Scholar 

  23. Song W-L, Wang P, Cao L, Anderson A, Meziani MJ, Farr AJ, Sun Y-P (2012) Angew Chem 51:6498–6501

    Article  Google Scholar 

  24. Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P (2012) Polymer 53:471–480

    Article  Google Scholar 

  25. Duana Z-Q, Liua Y-T, Xiea X-M, Ye X-Y (2013) Chin Chem Lett 24:17–19

    Article  Google Scholar 

  26. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, Bertozzi CR (2009) J Am Chem Soc 131:890–891

    Article  Google Scholar 

  27. Lahiri D, Rouzaud F, Richard T, Keshri AK, Bakshi SR, Kos L, Agarwal A (2010) Acta Biomater 6:3524–3533

    Article  Google Scholar 

  28. Ciofani G, Raffa V, Menciassi A, Cuschieri A (2009) Nano Today 4:8–10

    Article  Google Scholar 

  29. Emanet M, Sen Ö, Cobandede Z, Culha M (2015) Colloids Surf B 134:440–446

    Article  Google Scholar 

  30. Lahiri D, Singh V, Benaduce AP, Seal S, Kos L, Agarwal A (2011) J Mech Behav Biomed Mater 4:44–56

    Article  Google Scholar 

  31. Islam M S, Kouzani AZ, Dai XJ, Michalski WP (2010) In: IEEE region 10 conference, Fukuoka, Japan

  32. Zhou YL, Zhi JF, Wang PF, Chong YM, Zou YS, Zhang WJ, Lee ST (2008) Appl Phys Lett 92:163105

    Article  Google Scholar 

  33. Raffa V, Ciofani G, Cuschieri A (2009) Nanotechnology 20(7):075104

    Article  Google Scholar 

  34. Weng Q et al (2014) ACS Nano 8:6123–6130

    Article  Google Scholar 

  35. Zhi C, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D (2009) Adv Funct Mater 19:1857–1862

    Article  Google Scholar 

  36. Huang X, Zhi C, Jiang P, Golberg D, Bando Y, Tanaka T (2013) Adv Funct Mater 23:1824–1831

    Article  Google Scholar 

  37. Luo X, Zhang Y, Zanden C, Murugesan M, Cao Y, Ye L, Liu J (2014) J Mater Sci Mater Electron 25:2333–2338

    Article  Google Scholar 

  38. Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D (2009) Adv Mater 21:2889–2893

    Article  Google Scholar 

  39. Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE (1995) J Phys Chem 99:10694–10697

    Article  Google Scholar 

  40. Pacilé D, Meyer JC, Girit ÇÖ, Zettl A (2008) Appl Phys Lett 92:133107

    Article  Google Scholar 

  41. Novoselov KS, Geim AK, Morozov SV, Dubonos SV, Zhang Y, Jiang D (2004) Science 306:666–669

    Article  Google Scholar 

  42. Meyer JC, Chuvilin A, Algara-Siller G, Biskupek J, Kaiser U (2009) Nano Lett 9:2683–2689

    Article  Google Scholar 

  43. Gorbachev RV et al (2011) Small 7:465–468

    Article  Google Scholar 

  44. Li LH, Chen Y, Behan G, Zhang H, Petravic M, Glushenkov AM (2011) J Mater Chem 21:11862

    Article  Google Scholar 

  45. Gasgnier M, Szwarc H, Ronez A (2000) J Mater Sci 35:3003–3009. doi:10.1023/A:1004735011914

    Article  Google Scholar 

  46. Coleman J et al (2011) Science 331:568–571

    Article  Google Scholar 

  47. Han W-Q, Wu L, Zhu Y, Watanabe K, Taniguchi T (2008) Appl Phys Lett 93:223103

    Article  Google Scholar 

  48. Lourie OR, Jones CR, Bartlett BM, Gibbons PC, Ruoff RS, Buhro WE (2000) Chem Mater 12:1808–1810

    Article  Google Scholar 

  49. Yan X-T, Xu Y (2010) An integrated engineering design for advanced materials In: Chemical vapour deposition, Springer-Verlag, London, p XIV, 342

  50. Auwarter W, Suter HU, Sachdev H, Greber T (2004) Chem Mater 16:343–345

    Article  Google Scholar 

  51. Muller F, Stowe K, Sachdev H (2005) Chem Mater 17:3464–3467

    Article  Google Scholar 

  52. Shelimov KB, Moskovits M (2000) Chem Mater 12:250–254

    Article  Google Scholar 

  53. Zhu Y-C, Bando Y, Yin L-W, Golberg D (2004) Chem Eur J 10:3667–3672

    Article  Google Scholar 

  54. Ahmad P, Khandaker MU, Amin YM, Khan ZR (2015) AIP Conf Proc 1657:100010

    Article  Google Scholar 

  55. Cumings J, Zettl A (2000) Chem Phys Lett 316:211–216

    Article  Google Scholar 

  56. Weng-Sieh Z et al (1995) Phys Rev B 51:11229

    Article  Google Scholar 

  57. Stephan O, Ajayan P, Colliex C, Redlich P, Lambert J, Bernier P, Lefin P (1994) Science 266:1683–1685

    Article  Google Scholar 

  58. Arenal R, Stephan O, Cochon J-L, Loiseau A (2007) J Am Chem Soc 129:16183–16189

    Article  Google Scholar 

  59. Golberg D, Bando Y, Eremets M, Takemura K, Kurashima K, Yusa H (1996) Appl Phys Lett 69:2045–2047

    Article  Google Scholar 

  60. Yu DP et al (1998) Appl Phys Lett 72:1966

    Article  Google Scholar 

  61. Zhang CY, Zhong XL, Wang JB, Yang GW (2003) Chem Phys Lett 370:522–527

    Article  Google Scholar 

  62. lmyanitov NS (1993) J Chem Educ 70:14

    Article  Google Scholar 

  63. Han W-Q, Yu H-G, Liu Z (2011) Appl Phys Lett 98:203112

    Article  Google Scholar 

  64. Han W, Bando Y, Kurashima K, Sato T (1998) Appl Phys Lett 73:3085

    Article  Google Scholar 

  65. Liao Y, Chen Z, Connell JW, Fay CC, Park C, Kim J-W, Lin Y (2014) Adv Funct Mater 24:4497–4506

    Article  Google Scholar 

  66. Huang MT, Ishida H (1999) J Polym Sci Part B Polym Phys 37:2360–2372

    Article  Google Scholar 

  67. Sato K, Horibe H, Shirai T, Hotta Y, Nakano H, Nagai H, Mitsuishid K, Watari K (2010) J Mater Chem 20:2749–2752

    Article  Google Scholar 

  68. Wu K, Lei C, Yang W, Chai S, Chen F, Fu Q (2016) Compos Sci Technol 134:191–200

    Article  Google Scholar 

  69. Ciofani G, Genchi GG, Liakos I, Athanassiou A, Dinucci D, Chiellini F, Mattoli V (2012) J Colloid Interface Sci 374:308–314

    Article  Google Scholar 

  70. Nazarov AS, Demin VN, Grayfer ED, Bulavchenko AI, Arymbaeva AT, Shin H-J, Choi J-Y, Fedorov VE (2012) Chem Asian J 7:554–560

    Article  Google Scholar 

  71. Zhi CY, Bando Y, Terao T, Tang CC, Kuwahara H, Golberg D (2009) Chem Asian J 4:1536–1540

    Article  Google Scholar 

  72. Xie B-H, Huang X, Zhang G-J (2013) Compos Sci Technol 85:98–103

    Article  Google Scholar 

  73. Ikuno T, Sainsbury T, Okawa D, Frechet JMJ, Zettl A (2007) Solid State Commun 142:643–646

    Article  Google Scholar 

  74. Sainsbury T, Satti A, May P, Wang Z, McGovern I, Gunko YK, Coleman J (2012) J Am Chem Soc 134:18758–18771

    Article  Google Scholar 

  75. Sainsbury T, Satti A, May P, Neill AO, Nicolosi V, Ko YKG, Coleman JN (2012) Chem Eur J 18:10808–10812

    Article  Google Scholar 

  76. Kim K, Kim M, Hwang Y, Kim J (2014) Ceram Int 40:2047–2056

    Article  Google Scholar 

  77. Kim K, Ju H, Kim J (2016) Polymer 91:74–80

    Article  Google Scholar 

  78. Huang Q, Bando Y, Zhi C, Golberg D, Kurashima K, Xu F, Gao L (2006) Angew Chem 118:2098–2101

    Article  Google Scholar 

  79. Çamurlu HE, Mathur S, Arslan O, Akarsu E (2016) Ceram Int 42:6312–6318

    Article  Google Scholar 

  80. Joni IM, Balgis R, Ogi T, Iwaki T, Okuyama K (2011) Colloids Surf A 388:49–58

    Article  Google Scholar 

  81. Hou J, Li G, Yang N, Qin L, Grami ME, Zhang Q, Wang N, Qu X (2014) RSC Adv 4:44282–44290

    Article  Google Scholar 

  82. Tsekmes IA, Kochetov R, Morshuis PHF, Smit JJ (2014) In: Electrical insulation conference

  83. Huang X, Jiang P, Tanaka T (2011) IEEE Electr Insul Mag 27:8–16

    Article  Google Scholar 

  84. Shin H, Guan J, Zgierski MZ, Kim KS, Kingston CT, Simard B (2015) ACS Nano 9:12573–12582

    Article  Google Scholar 

  85. Lin Y, Williams TV, Cao W, Elsayed-Ali HE, Connell JW (2010) J Phys Chem C 114:17434–17439

    Article  Google Scholar 

  86. Pal S, Vivekchand SRC, Govindaraj A, Rao CNR (2007) J Mater Chem 17:450–452

    Article  Google Scholar 

  87. Zhi C, Bando Y, Tang C, Honda S, Sato K, Kuwahara H, Golberg D (2005) Angew Chem 44:7932–7935

    Article  Google Scholar 

  88. Zhou S-J, Ma C-Y, Meng Y-Y, Su H-F, Zhu Z, Deng S-L, Xie S-Y (2012) Nanotechnology 23:055708

    Article  Google Scholar 

  89. Souma H, Hayashi S (2011) Chem Soc Jpn 40:1121–1123

    Google Scholar 

  90. Tang C, Bando Y, Huang Y, Yue S, Gu C, Xu F, Golberg D (2005) J Am Chem Soc 127:6552–6553

    Article  Google Scholar 

  91. Velayudham S, Lee CH, Xie M, Blair D, Bauman N, Yap YK, Green SA, Liu H (2010) Appl Mater Interfaces 2:104–110

    Article  Google Scholar 

  92. Georgakilas V, Otyepka M, Bourlinos A, Chandra V, Kim N, Kemp K, Hobza P, Zboril R, Kim K (2012) Chem Rev 112:6156–6214

    Article  Google Scholar 

  93. Chen MS, Brandow SL, Schull TL, Chrisey DB, Dressick WJ (2005) Adv Funct Mater 15:1364–1375

    Article  Google Scholar 

  94. Lee CH, Zhang D, Yap YK (2012) J Phys Chem C 116:1798–1804

    Article  Google Scholar 

  95. Gao Z, Zhi C, Bando Y, Golberg D, Serizawa T (2010) J Am Chem Soc 132:4976–4977

    Article  Google Scholar 

  96. Li R et al (2014) Chem Commun 50:225–227

    Article  Google Scholar 

  97. He Y-M, Wang Q-Q, Liu W, Liu Y-S (2011) Phys Status Solidi A 211:677–684

    Article  Google Scholar 

  98. Terao T, Bando Y, Mitome M, Zhi C, Tang C, Golberg D (2009) J Phys Chem C 113:13605–13609

    Article  Google Scholar 

  99. Zhou W, Zuo J, Zhang X, Zhou A (2014) J Compos Mater 48:2517–2526

    Article  Google Scholar 

  100. Fang L, Wu C, Qian R, Xie L, Yanga K, Jiang P (2014) RSC Adv 4:21010–21017

    Article  Google Scholar 

  101. Gu J, Zhang Q, Dang J, Xie C (2012) Polym Adv Technol 23:1025–1028

    Article  Google Scholar 

  102. Xu Y, Chung DDL (2000) Compos Interfaces 7:243–256

    Article  Google Scholar 

  103. Kubota Y, Watanabe K, Tsuda O, Taniguchi T (2007) Science 317:932–934

    Article  Google Scholar 

  104. Li Q et al (2015) Nature 523:576–579

    Article  Google Scholar 

  105. Lee E-S, Lee S-M, Shanefield DJ, Cannon WR (2008) J Am Ceram Soc 91:1169–1174

    Article  Google Scholar 

  106. Zhi C, Bando Y, Tang C, Xie R, Sekiguchi T, Golberg D (2005) J Am Chem Soc 127:15996–15997

    Article  Google Scholar 

  107. Zhi C, Bando Y, Tang C, Golberg D (2005) J Am Chem Soc 127:17144–17145

    Article  Google Scholar 

  108. Saha M, Tambe P, Pal S, Kubade P, Manivasagam G, Xavior MA, Umashankar V (2015) Compos Interfaces 22:611–627

    Article  Google Scholar 

  109. Yang J, Qi G-Q, Tang L-S, Bao R-Y, Bai L, Liu Z-Y, Yang W, Xie B-H, Yang M-B (2016) J Mater Chem A 4:9625–9634

    Article  Google Scholar 

  110. Lee HL, Kwon OH, Ha SM, Kim BG, Kim YS, Won JC, Kim J, Choi JH, Yoo Y (2014) Phys Chem Chem Phys 16:20041–20046

    Article  Google Scholar 

  111. Wu H, Kessler MR (2015) ACS Appl Mater Interfaces 7:5915–5926

    Article  Google Scholar 

  112. Shen H, Guo J, Wang H, Zhao N, Xu J (2015) ACS Appl Mater Interfaces 7:5701–5708

    Article  Google Scholar 

  113. Xie S-Y, Wang W, Fernando KAS, Wang X, Lin Y, Sun Y-P (2005) Chem Commun 3670–3672

  114. Ahn K, Kim K, Kim J (2015) Ceram Int 41:9488–9495

    Article  Google Scholar 

  115. Li M, Huang X, Wu C, Xu H, Jiang P, Tanaka T (2012) J Mater Chem 22:23477–23484

    Article  Google Scholar 

  116. Dang Z-M, Wang L, Yin Y, Zhang Q, Lei Q-Q (2007) Adv Mater 19:852–857

    Article  Google Scholar 

  117. Wang F, Zeng X, Yao Y, Sun R, Xu J, Wong C-P (2016) Sci Rep 6:19394

    Article  Google Scholar 

  118. Ide Y, Liu F, Zhang J, Kawamoto N, Komaguchi K, Bandoa Y, Golberga D (2014) J Mater Chem A 2:4150–4156

    Article  Google Scholar 

  119. Xiang C, Chen T, Zhang H, Zou Y, Chu H, Zhang H, Xu F, Sun L, Tang C (2017) Appl Surf Sci. http://doi.org/10.1016/j.apsusc.2017.02.224

  120. Harley-Trochimczyk A, Pham T, Chang J, Chen E, Worsley MA, Zettl A, Mickelson W, Maboudian R (2016) Adv Funct Mater 26:433–439

    Article  Google Scholar 

  121. Fu X, Hu Y, Yang Y, Liu W, Chen S (2013) J Hazard Mater 244–245:102–110

    Article  Google Scholar 

  122. Weng Q et al (2015) Nano Energy 16:19–27

    Article  Google Scholar 

  123. Štengl V, Henych J, Slušná M (2016) J Nanomater. http://doi.org/10.1155/2016/4580516

  124. Fu X, Hu Y, Zhang T, Chen S (2013) Appl Surf Sci 280:828–835

    Article  Google Scholar 

  125. Wang M, Li M, Xu L, Wang L, Ju Z, Li G, Qian Y (2011) Catal Sci Technol 1:1159–1165

    Article  Google Scholar 

  126. Chen J, Zhu J, Da Z, Xu H, Yan J, Ji H, Shu H, Li H (2014) Appl Surf Sci 313:1–9

    Article  Google Scholar 

  127. Wu W, Lv X, Wang J, Xie J (2017) J Colloid Interface Sci 496:434–445

    Article  Google Scholar 

  128. Meng S, Ye X, Ning X, Xie M, Fu X, Chen S (2016) Appl Catal B 182:356–368

    Article  Google Scholar 

  129. Li X et al (2016) RSC Adv 6:99165–99171

    Article  Google Scholar 

  130. Wang S, Luo H, Xu X, Bai Y, Song X, Zhang J, Li J, Zhao J, Tang C (2016) Surf Interfaces 5:39–46

    Article  Google Scholar 

  131. Liu Z et al (2013) Nat Nanotechnol 8:119–124

    Article  Google Scholar 

  132. Cui Z, Oyer AJ, Glover AJ, Schniepp CH, Adamson HD (2014) Small 10:2352–2355

    Article  Google Scholar 

  133. Zhi C, Hanagata N, Bando Y, Golberg D (2011) Chem Asian J 6:2530–2535

    Article  Google Scholar 

  134. Li L, Liu X, Dai XJ, Li L, Chen Y (2013) Chin Sci Bull 58:3403–3408

    Article  Google Scholar 

  135. Pakdel A, Bando Y, Golberg D (2014) ACS Nano 8:10631–10639

    Article  Google Scholar 

  136. Dai XJ, Chen Y, Chen Z, Lamb PR, Li LH, Plessis JD, McCulloch DG, Wang X (2011) Nanotechnology 22:245301–245310

    Article  Google Scholar 

  137. Ageev V, Ugarov M, Frolov V, Karabutov A, Loubnin E, Badi N, Bensaoula A (2000) J Appl Phys 88:7197–7200

    Article  Google Scholar 

  138. Huang JY, Yasuda H, Mori H (2000) J Am Ceram Soc 83:403–409

    Article  Google Scholar 

  139. Ghosh J, Mazumdar S, Das M, Ghatak S, Basu AK (2008) Mater Res Bull 43:1023–1031

    Article  Google Scholar 

  140. Neiner D, Karkamkar A, Linehan JC, Arey B, Autrey T, Kauzlarich SM (2009) J Phys Chem C 113:1098–1103

    Article  Google Scholar 

  141. Lei W, Mochalin VN, Liu D, Qin S, Gogotsi Y, Chen Y (2015) Nat Commun 6:8849

    Article  Google Scholar 

  142. Kakemam J, Noei M (2014) Russ J Phys Chem A 88:1751–1756

    Article  Google Scholar 

  143. Albe K, Möller W, Heinig K-H (1997) Radiat Eff Defects Solids 141:85–97

    Article  Google Scholar 

  144. Peyghan AA, Bagheri Z (2013) Acta Chim Slov 60:743–749

    Google Scholar 

  145. Sundaram R, Scheiner S, Roy AK, Kar T (2015) Phys Chem Chem Phys 17:3850–3866

    Article  Google Scholar 

  146. H-m Wang, Y-j Liu, H-x Wang, J-x Zhao, Q-h Cai, X-z Wang (2013) J Mol Model 19:5143–5152

    Article  Google Scholar 

  147. Anota EC, Cocoletzi GH (2013) J Mol Model 19:2335–2341

    Article  Google Scholar 

  148. Bacle P, Seitsonen AP, Iannuzzi M, Hutter J (2014) CHIMIA Int J Chem 68:596–601

    Article  Google Scholar 

  149. Grosjean B, Pean C, Siria A, Bocquet L, Vuilleumier R, Bocquet M-L (2016) J Phys Chem Lett 7:4695–4700

    Article  Google Scholar 

  150. Wu X, An W, Zeng XC (2006) J Am Chem Soc 128:12001–12006

    Article  Google Scholar 

  151. Guo Y, Guo W (2014) Nanoscale 6:3731–3736

    Article  Google Scholar 

  152. Tian Y, Pan X-F, Liu Y-J, Zhao J-X (2014) Appl Surf Sci 295:137–143

    Article  Google Scholar 

  153. Nematollahi P, Esrafili MD, Bagheri A (2015) Can J Chem 94:105–111

    Article  Google Scholar 

  154. Roohi H, Nowroozi A-R, Ebrahimi A, Makiabadi B (2010) J Mol Struct Theochem 952:36–45

    Article  Google Scholar 

  155. Zhou Z, Zhao J, Chen Z, Schleyer PVR (2006) J Phys Chem B 110:25678–25685

    Article  Google Scholar 

  156. Petrushenko I (2016) J Nano- Electron Phys 8:3031-1

    Article  Google Scholar 

  157. Su M-D (2005) J Phys Chem B 109:21647–21657

    Article  Google Scholar 

  158. Li R-F, Shang X-F, Wang G-C, Xu Z-F (2009) Chin J Struct Chem 28(1):021

    Google Scholar 

  159. Zhang F, Németh K, Bareño J, Dogan F, Bloom ID, Shaw LL (2016) RSC Adv 6:27901–27914

    Article  Google Scholar 

  160. Baei MT, Peyghan AA, Bagheri Z (2013) Struct Chem 24:1007–1013

    Article  Google Scholar 

  161. Peyghan AA, Aslanzadeh SA, Samiei A (2014) Monatshefte für Chemie-Chemical Monthly 145:1083–1087

    Article  Google Scholar 

  162. Farmanzadeh D, Ghazanfary S (2013) J Serb Chem Soc 78:75–83

    Article  Google Scholar 

  163. Chermahini AN, Teimouri A, Farrokhpour H (2014) Appl Surf Sci 320:231–236

    Article  Google Scholar 

  164. Akdim B, Kim SN, Naik RR, Maruyama B, Pender MJ, Pachter R (2009) Nanotechnology 20:355705

    Article  Google Scholar 

  165. Eslami M, Vahabi V, Peyghan AA (2016) Physica E 76:6–11

    Article  Google Scholar 

  166. J-x Zhao, Y-h Ding (2009) Mater Chem Phys 116:21–27

    Article  Google Scholar 

  167. Aslanzadeh SA (2016) Comput Theor Chem 1091:72–77

    Article  Google Scholar 

  168. Li XM, Tian WQ, Huang XR, Sun CC, Jiang L (2009) J Nanopart Res 11:395–403

    Article  Google Scholar 

  169. Deng Z-Y, Zhang J-M (2016) Can J Phys 94:1071–1079

    Article  Google Scholar 

  170. Chen W, Li Y, Yu G, Zhou Z, Chen Z (2009) J Chem Theory Comput 5:3088–3095

    Article  Google Scholar 

  171. Li Y, Zhou Z, Zhao J (2007) J Chem Phys 127:184705

    Article  Google Scholar 

  172. Zahedi E (2012) Physica B 407:3841–3848

    Article  Google Scholar 

  173. Mirzaei M (2013) Superlattices Microstruct 57:44–50

    Article  Google Scholar 

  174. Bhattacharya A, Bhattacharya S, Das GP (2012) Phys Rev B 85:035415

    Article  Google Scholar 

  175. Bhattacharya A, Bhattacharya S, Majumder C, Das GP (2010) Phys Status Solidi RRL 4:368–370

    Article  Google Scholar 

  176. Li X, Zhao J, Yang J (2013) Sci Rep 3:1858

    Article  Google Scholar 

  177. Waters K, Pandey R, Karna SP (2017) ACS Omega 2:76–83

    Article  Google Scholar 

  178. Saikia N, Jha AN, Deka RC (2013) RSC Adv 3:15102–15107

    Article  Google Scholar 

  179. Ansari R, Ajori S, Ameri A (2016) Appl Surf Sci 366:233–244

    Article  Google Scholar 

  180. Anota EC, Tlapale Y, Villanueva MS, Márquez JR (2015) J Mol Model 21:215

    Article  Google Scholar 

  181. Zhao Y, Wu X, Yang J, Zeng XC (2011) Phys Chem Chem Phys 13:11766–11772

    Article  Google Scholar 

  182. Anota EC, Cocoletzi GH, Tapia AMG (2015) Open Chem 13:734–742

    Article  Google Scholar 

  183. J-x Zhao, Y-h Ding (2010) Diam Relat Mater 19:1073–1077

    Article  Google Scholar 

  184. Zhao J-X, Yu Y-Y, Bai Y, Lu B, Wang B-X (2012) J Mater Chem 22:9343–9350

    Article  Google Scholar 

  185. Cohen AJ, Mori-Sánchez P, Yang W (2008) Science 321:792–794

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the USDA National Institute of Food and Agriculture, AFRI project [2017-67021-26604].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Cox, M. & Li, B. Surface modification of hexagonal boron nitride nanomaterials: a review. J Mater Sci 53, 66–99 (2018). https://doi.org/10.1007/s10853-017-1472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1472-0

Keywords

Navigation