Skip to main content
Log in

Atomic scale HAADF-STEM study of η′ and η 1 phases in peak-aged Al–Zn–Mg alloys

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructures of precipitates in Al–Zn–Mg alloys in peak-aged condition have been studied using scanning transmission electron microscope. The same thermo-mechanical treatment was applied in all alloys. Investigation of peak-aged samples revealed that the most commonly found phases were η′ and η 1 with their respective habit planes on {111}Al and {100}Al. η′ phases under [110]Al were analyzed and compared with η′ structure models. Furthermore, a close inspection of η 1 phase as the second most found precipitate revealed that it incorporates an anti-phase resembling boundary, not observed in other orientation relationships that precipitates create with Al matrix, in addition, differences in matrix-precipitate interfaces between η′/η 2 and η 1 phases were noticed. This paper addresses the first part to the analysis of η′ phase. Next part is extended to the analysis of the η 1 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Starke EA Jr, Staley JT (1996) Application of modern aluminum alloys to aircraft. Prog Aerosp Sci 32:131–172

    Article  Google Scholar 

  2. Berg LK, Gjonnes J, Hansen V, Li XZ, Knutson-Wedel M, Waterloo G, Schryvers D, Wallenberg LR (2001) GP-zones in Al–Zn–Mg alloys and their role in artificial ageing. Acta Mater 49:3443–3451

    Article  Google Scholar 

  3. Guinier A (1952) Interprétation de la Diffusione Anormale des Rayons X pas les Alliages à Durcissement Structural. Acta Cryst 5:121–130

    Article  Google Scholar 

  4. Matsuda K, Kawai A, Watanabe K, Lee S, Marioara CD, Wenner S, Nishmura K, Matsuzaki T, Nunomura N, Sato T, Holmestad R, Ikeno S (2017) Extra electron diffraction spots caused by fine precipitates formed at the early stage of ageing in Al–Mg–X (X = Si, Ge, Zn)—Cu Alloys. Mater Trans 58(2):167–175

    Article  Google Scholar 

  5. Jiang X, Noble B, Holme B, Waterloo G, Tafto J (2000) Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al–Zn–Mg alloys. Metall Mater Trans A 13A:339–348

    Article  Google Scholar 

  6. Sha G, Cerezo A (2004) Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Mater 52:4503–4516

    Article  Google Scholar 

  7. Engdahl T, Hansen V, Warren PJ, Stiller K (2002) Investigation of fine scale precipitates in Al–Zn–Mg alloys after various heat treatment. Mater Sci Eng A 327:59–64

    Article  Google Scholar 

  8. Stiller K, Warren PJ, Hansen V, Angenete J, Gjonnes J (1999) Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100° and 150°C. Mater Sci Eng A 270:55–63

    Article  Google Scholar 

  9. Park JK, Ardell AJ (1983) Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers. Metall Trans A 14A:1957–1965

    Article  Google Scholar 

  10. Mondolfo LF, Gjostein NA, Levinson DW (1956) Structural changes during the aging in an Al–Mg–Zn alloy. Trans AIME J Metals 8:1378–1385

    Google Scholar 

  11. Graf R (1957) Comptes rendus hebdomadaires des séances de Académie des sciences, Paris: 244

  12. Gjonnes J, Simensen CJ (1970) An electron microscope investigation of the microstructure in an Aluminum–Zinc–Magnesium alloy. Acta Metall 18:881–890

    Article  Google Scholar 

  13. Auld JH, Cousland SM (1971) The transition phase η′ in Al–Zn–Mg alloys. Scr Metall 5:765–770

    Article  Google Scholar 

  14. Auld JH, Cousland SM (1974) The structure of the metastable η′ phase in Aluminium–Zinc–Magnesium Alloys. J Aust Inst Metals 19:194–199

    Google Scholar 

  15. Mondolfo LF (1976) Aluminum alloys: structures and properties. Butterworths, London

    Google Scholar 

  16. Régnier PC, Bouvaist J, Simon JP (1982) Etude Cristallographique de la Phase de Transition M’ dans Al-8%Zn-1%Mg. J Appl Cryst 15:590–593

    Article  Google Scholar 

  17. Auld JH, Cousland SM (1985) On the structure of the M’ phase in Al–Zn–Mg alloys. J Appl Cryst 18:47–48

    Article  Google Scholar 

  18. Li XZ, Hansen V, Gjonnes J, Wallenberg LR (1999) H.R.E.M study. Acta Mater 47:2651–2659

    Article  Google Scholar 

  19. Kverneland A, Hansen V, Vincent R, Gjonnes K, Gjonnes J (2006) Ultramicroscopy 106:492–502

    Article  Google Scholar 

  20. Marioara CD, Lefebre W, Andersen SJ, Friis J (2013) Atomic structure of hardening precipitates in an Al–Mg–Zn–Cu alloy determined by HAADF-STEM and first principle calculations: relation to η—MgZn2. J Mater Sci 48:3638–3651

    Article  Google Scholar 

  21. Komura Y, Tokunaga K (1980) Structural studies of stacking variants in Mg-base Friauf–Laves phases. Acta Cryst B36:1548–1554

    Article  Google Scholar 

  22. De Ardo AJ, Simensen CJ (1973) A structural investigation of multiple aging of Al—7 wt pct Zn—2.3 wt pct Mg. Metall Trans 4:2413–2421

    Article  Google Scholar 

  23. Ryum N (1975) Precipitation Kinetics in an Al–Zn–Mg-Alloy. Z Metallkde 66(6):338–343

    Google Scholar 

  24. Thackery PA (1968) The nature and morphology of precipitate in Al–Zn–Mg alloys. J Inst Metals 96:228–237

    Google Scholar 

  25. Godard D, Archambault P, Aeby-Gautier E, Lapasset G (2002) Precipitation sequences during quenching of the AA710 alloy. Acta Mater 50:2319–2329

    Article  Google Scholar 

  26. Bergman G, Waugh JLT, Pauling L (1957) The crystal structure of the metallic phase Mg32(Al, Zn)49. Acta Cryst 10:254–258

    Article  Google Scholar 

  27. Cornish AJ, Day MKB (1971) The effect of variable quenching conditions on the relationship between the stress–corrosion–resistance, tensile properties, and micro-structure of a high-purity Al–Zn–Mg alloy. J Inst Metals 99:377–384

    Google Scholar 

  28. Par M. Bernole et R. Graf (1972) Influence du zinc sur la decomposition de la solution solide sursaturee Al–Mg. Memoires Scientifiques Rev. Metallurg., LXIX, N.2, pp 123–142

  29. Marlaud T, Deschamps A, Bley F, Lefebre W, Baroux B (2010) Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg-Cu alloys. Acta Mater 58:248–260

    Article  Google Scholar 

  30. Polmear IJ (1960) The ageing characteristics of complex Al–Zn–Mg alloys. Distinctive effects of copper and silver on the ageing mechanism. Inst Metals 89:51–59

    Google Scholar 

  31. Chinh NQ, Lendvai J, Ping DH, Hono K (2004) The effect of Cu on mechanical and precipitation properties of Al–Zn–Mg alloys. J Alloy Compd 378:52–60

    Article  Google Scholar 

  32. Parker BA (1972) The effect of certain trace element additions on the ageing behavior of an Aluminum-4 wt% Zinc-3 wt% Magnesium alloy. J Aust Inst Metals 17(1):31–38

    Google Scholar 

  33. Zahra A, Zahra CY, Lacom W, Degischer HP (1982) Comments on “the influence of Mg contents on the formation and reversion of Guinier–Preston zones in Al-4.5at%Zn-xMg alloys”. Z Metallkde 3068–3071

  34. Watanabe K, Matsuda K, Ikeno S, Yoshida T, Murakami S (2015) TEM observation of precipitate structures in Al–Zn–Mg alloys with additions of Cu/Ag. Arch Metall Mater 60:977–979

    Article  Google Scholar 

  35. Pennycook SJ, Nellist PD (2011) Scanning transmission electron microscopy: imaging and analysis. Springer, New York

    Book  Google Scholar 

  36. Maloney SK, Hono K, Polmear IJ, Ringer SP (2001) The effects of trace addition of silver upon elevated temperature ageing of an Al–Zn–Mg alloy. Micron 32:741–747

    Article  Google Scholar 

  37. Li Y-Y, Kovarik L, Phillips PJ, Hsu Y-F, Wang W-H, Mills MJ (2012) High-resolution characterization of the precipitation behavior of an Al-Zn-Mg-Cu alloy. Philo Mag Letters 92(4):166–178

    Article  Google Scholar 

  38. Stein F, Palm M, Sauthoff G (2004) Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability. Intermetallics 12:713–720

    Article  Google Scholar 

  39. Ohba T, Kitano Y, Komura Y (1984) The charge-density study of the laves phases, MgZn2 and MgCu2. Acta Cryst C40:1–5

    Google Scholar 

  40. Ying XR, Du YX, Song M, Lu N, Ye HQ (2016) Direct measurement of precipitate induced strain in an Al–Zn–Mg–Cu alloy with aberration corrected transmission electron microscopy. Micron 90:18–22

    Article  Google Scholar 

  41. Wenner S, Friis J, Marioara CD, Holmestad R (2016) Precipitation in a mixed Al–Cu–Mg/Al–Zn–Mg alloy system. J Alloy Compd 684:195–200

    Article  Google Scholar 

  42. Fang X, Song M, Li K, Yound D, Zhao D, Jiang C, Zhang H (2012) Effects of Cu and Al on the crystal structure and composition of η (MgZn2) phase in over-aged Al–Zn–Mg–Cu alloys. J Mater Sci 47:5419–5427

    Article  Google Scholar 

  43. Martin JW (1998) Precipitation hardening, 2nd edn. Butterworth Heinemann, Oxford

    Google Scholar 

  44. Dieter GE (1961) Mechanical metallurgy, 2nd edn. MCGraw-Hill, New York

    Google Scholar 

  45. Allen RM, Vander Sande JB (1980) The oriented growth of precipitates on dislocations in Al–Zn–Mg part I. Experimental observations. Acta Metall 28:1185–1195

    Article  Google Scholar 

  46. Wolverton C (2001) Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys. Acta Mater 49:3129–3142

    Article  Google Scholar 

  47. Inoue H, Sato T, Kojima Y, Takahashi T (1981) The temperature limit for GP zone formation in an Al–Zn–Mg alloy. Metall Trans A 12A:1429–1434

    Article  Google Scholar 

  48. Embury JD, Nicholson RB (1965) The nucleation of precipitates: the system Al–Zn–Mg. Acta Metall 13:403–417

    Article  Google Scholar 

  49. Porter DA, Easterling KE (1992) Phase transformations in metals and alloys, 2nd edn. Chapman & Hall, London

    Google Scholar 

Download references

Acknowledgements

This work was supported by JST (Japan Science and Technology Agency) under collaborative research based on industrial demand “Heterogeneous Structure Control”: Toward innovative development of metallic structural materials. The authors also acknowledge Dr. Junya Nakamura, Mr. Ryoma Arita and Prof. emeritus Susumu Ikeno, University of Toyama. A part of this research was supported by President description, University of Toyama (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artenis Bendo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendo, A., Matsuda, K., Lee, S. et al. Atomic scale HAADF-STEM study of η′ and η 1 phases in peak-aged Al–Zn–Mg alloys. J Mater Sci 53, 4598–4611 (2018). https://doi.org/10.1007/s10853-017-1873-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1873-0

Keywords

Navigation