Skip to main content
Log in

Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Replacement of commonly gold (Au) with other non-precious metals is a crucial step for low-cost perovskite solar cells (PSCs). However, severe performance degradations always occurred when we get rid of the Au electrode, mainly because of the deteriorated hole-transporting properties. Here, we reported that the efficiency of the PSCs featuring silver (Ag) back-electrode can be increased from 17.02 to 18.62% after introducing a thin molybdenum trioxide (MoO3) film in between the Spiro-OMeTAD and the Ag electrode. Characterizations from impedance spectrum and dark current density showed that the addition of MoO3 can effectively reduce the series resistance and reverse saturation current density of the devices, thereby leading to improved fill factor and open-circuit voltage. The enhancements in hole transport and extraction at the interface were further confirmed by the external quantum efficiency and photoluminescence tests. Our results suggested that silver electrode with MoO3 is a promising design strategy for efficient and cost-effective PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kazim S, Nazeeruddin MK, Gratzel M, Ahmad S (2014) Perovskite as light harvester: a game changer in photovoltaics. Angew Chem Int Ed Engl 53:2812–2824

    Article  Google Scholar 

  2. Manser JS, Kamat PV (2014) Band filling with free charge carriers in organometal halide perovskites. Nat Photonics 8:737–743

    Article  Google Scholar 

  3. Miyata A, Mitioglu A, Plochocka P et al (2015) Direct measurement of the exciton binding energy and effective masses for charge carriers in an organic–inorganic tri-halide perovskite. Nat Phys 11:582–587

    Article  Google Scholar 

  4. Yang WS, Park BW, Jung EH et al (2017) Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356:1376–1379

    Article  Google Scholar 

  5. Domanski K, Correa-Baena JP, Mine N et al (2016) Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10:6306–6314

    Article  Google Scholar 

  6. Wei D, Wang T, Ji J et al (2016) Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface. J Mater Chem A 4:1991–1998

    Article  Google Scholar 

  7. Lei L, Zhang S, Yang S et al (2018) Influence of hole transport material/metal contact interface on perovskite solar cells. Nanotechnology 29:255201–255214

    Article  Google Scholar 

  8. Li J, Dong Q, Li N, Wang L (2017) Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv Energy Mater 7:1602922–1602930

    Article  Google Scholar 

  9. Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A (2009) P-type doping of organic wide band gap materials by transition metal oxides: a case-study on molybdenum trioxide. Org Electron 10:932–938

    Article  Google Scholar 

  10. Meyer J, Hamwi S, Kroger M, Kowalsky W, Riedl T, Kahn A (2012) Transition metal oxides for organic electronics: energetics, device physics and applications. Adv Mater 24:5408–5427

    Article  Google Scholar 

  11. Lee KE, Liu L, Kelly TL (2014) Effect of molybdenum oxide electronic structure on organic photovoltaic device performance: an X-ray absorption spectroscopy study. J Phys Chem C 118:27735–27741

    Article  Google Scholar 

  12. Hou F, Su Z, Jin F et al (2015) Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale 7:9427–9432

    Article  Google Scholar 

  13. Liu P, Liu X, Lyu L et al (2015) Interfacial electronic structure at the CH3NH3PbI3/MoOx interface. Appl Phys Lett 106:193903–193908

    Article  Google Scholar 

  14. Schulz P, Cowan SR, Guan Z-L, Garcia A, Olson DC, Kahn A (2014) NiOX/MoO3 Bi-layers as efficient hole extraction contacts in organic solar cells. Adv Func Mater 24:701–706

    Article  Google Scholar 

  15. Zhao Y, Nardes AM, Zhu K (2014) Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells. Appl Phys Lett 104:21380–21384

    Google Scholar 

  16. Della Gaspera E, Peng Y, Hou Q, Spiccia L, Bach U, Jasieniak JJ, Cheng Y-B (2015) Ultra-thin high efficiency semitransparent perovskite solar cells. Nano Energy 13:249–257

    Article  Google Scholar 

  17. Pang S, Chen D, Zhang C et al (2017) Efficient bifacial semitransparent perovskite solar cells with silver thin film electrode. Sol Energy Mater Sol Cells 170:278–286

    Article  Google Scholar 

  18. Duong T, Lal N, Grant D et al (2016) Semitransparent perovskite solar cell with sputtered front and rear electrodes for a four-terminal tandem. IEEE Journal of Photovoltaics 6:679–687

    Article  Google Scholar 

  19. Christians JA, Manser JS, Kamat PV (2015) Best practices in perovskite solar cell efficiency measurements. Avoiding the error of making bad cells look good. J Phys Chem Lett 6:852–857

    Article  Google Scholar 

  20. Kim HS, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez EJ, Park NG, Bisquert J (2013) Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat Commun 4:2242

    Article  Google Scholar 

  21. Gonzalez-Pedro V, Juarez-Perez EJ, Arsyad WS, Barea EM, Fabregat-Santiago F, Mora-Sero I, Bisquert J (2014) General working principles of CH3NH3PbX3 perovskite solar cells. Nano Lett 14:888–893

    Article  Google Scholar 

  22. Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J (2014) Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ Sci 7:2359–2365

    Article  Google Scholar 

  23. Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y (2014) Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J Mater Chem A 2:705–710

    Article  Google Scholar 

  24. Cheung SK, Cheung NW (1986) Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett 49:85–87

    Article  Google Scholar 

  25. Bi D, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Baena J-PC, Decoppet J-D, Zakeeruddin SM, Nazeeruddin MK, Grätzel M, Hagfeldt A (2016) Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci Adv 2:1501170

    Article  Google Scholar 

  26. Tang Z, Bessho T, Awai F et al (2017) Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite. Sci Rep 7:12183

    Article  Google Scholar 

  27. Jiang Q, Zhang L, Wang H et al (2016) Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat Energy 1:1–7

    Google Scholar 

  28. Abate A, Leijtens T, Pathak S et al (2013) Lithium salts as ‘‘redox active’’ p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys Chem Chem Phys 15:2572–2579

    Article  Google Scholar 

  29. Schölin R, Karlsson MH, Eriksson SK, Siegbahn H, Johansson EMJ, Rensmo H (2012) Energy level shifts in Spiro-OMeTAD molecular thin films when adding Li-TFSI. J Phys Chem C 116:26300–26305

    Article  Google Scholar 

  30. Schulz P, Tiepelt JO, Christians JA et al (2016) High-work-function molybdenum oxide hole extraction contacts in hybrid organic–inorganic perovskite solar cells. ACS Appl Mater Interfaces 8:31491–31499

    Article  Google Scholar 

  31. Yoon S, Kim H, Shin E-Y, Bae I-G, Park B, Noh Y-Y, Hwang I (2016) Enhanced hole extraction by interaction between CuI and MoO3 in the hole transport layer of organic photovoltaic devices. Org Electron 32:200–207

    Article  Google Scholar 

  32. Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A (2009) Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films. Appl Phys Lett 95:251–254

    Article  Google Scholar 

  33. Greiner MT, Chai L, Helander MG, Tang W-M, Lu Z-H (2012) Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies. Adv Func Mater 22:4557–4568

    Article  Google Scholar 

  34. Kanai K, Koizumi K, Ouchi S, Tsukamoto Y, Sakanoue K, Ouchi Y, Seki K (2010) Electronic structure of anode interface with molybdenum oxide buffer layer. Org Electron 11:188–194

    Article  Google Scholar 

  35. Tokarz-Sobieraj R, Hermann K, Witko A, Blume A, Mestl G, Schlogl R (2001) Properties of oxygen sites at the MoO3(0 1 0) surface: density functional theory cluster studies and photoemission experiments. Surf Sci 489:107–112

    Article  Google Scholar 

  36. Stranks SD, Eperon GE, Grancini G et al (2013) Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344

    Article  Google Scholar 

  37. deQuilettes DW, Vorpahl SM, Stranks SD et al (2015) Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348:683–686

    Article  Google Scholar 

  38. Song D, Cui P, Wang T et al (2015) Managing carrier lifetime and doping property of lead halide perovskite by postannealing processes for highly efficient perovskite solar cells. J Phys Chem C 119:22812–22819

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (No. 2016YFB0700700), Zhejiang Provincial Natural Science Foundation (LR19E020005, LR16F040002), National Natural Science Foundation of China (11374168; 61674154; 61874177) and K.C. Wong Magna Fund in Ningbo University of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingqi Gao, Jichun Ye or Yuejin Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Gu, C., Zhu, J. et al. Engineering of hole-selective contact for high-performance perovskite solar cell featuring silver back-electrode. J Mater Sci 54, 7789–7797 (2019). https://doi.org/10.1007/s10853-018-03258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-03258-x

Navigation