Skip to main content
Log in

Rapid mechanochemical synthesis of nanostructured mohite Cu2SnS3 (CTS)

  • Mechanochemical Synthesis
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rapid solvent-free mechanochemical synthesis of CTS nanocrystals from elemental precursors is reported herein. The process is completed in 15 min, proceeding through immediate formation of CuS in a self-sustaining manner and its subsequent reaction with Sn and residual sulfur. The reaction progress was monitored by pressure and temperature changes in the milling vessel, X-ray diffraction, Soxhlet analysis, grain size analysis and electric resistivity measurements. The relationship between the consumption of metallic precursors, grain size and electrical resistivity is provided. The final product was nanocrystalline with crystallite size below 10 nm, as confirmed by both X-ray diffraction and transmission electron microscopy. The nanocrystals are agglomerated into micrometer-sized grains. It exhibits poor porous properties with the specific surface area value of 2.5 m2/g. The X-ray photoelectron spectroscopy has shown that the surface is significantly oxidized, due to milling in air. The optical properties of the prepared CTS nanocrystals are interesting for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Kovalenker VA, Malov VS, Evstigneeva TL, Vyaľsov LN (1982) Mohite, Cu2SnS3, a new sulphide of tin and copper. Zap Vsesoyuznogo Mineral Obshchestva 111:110–114

    Google Scholar 

  2. Qu BH, Zhang M, Lei DN et al (2011) Facile solvothermal synthesis of mesoporous Cu2SnS3 spheres and their application in lithium-ion batteries. Nanoscale 3:3646–3651

    Article  Google Scholar 

  3. Dias S, Krupanidhi SB (2016) Solution processed Cu2SnS3 thin films for visible and infrared photodetector applications. AIP Adv 6:025217

    Article  Google Scholar 

  4. Dias S, Krupanidhi SB (2016) Cu2SnS3 nanostructures for inorganic-organic hybrid infrared photodetector applications. Mater Res Express 3:105006

    Article  Google Scholar 

  5. Kanai A, Araki H, Takeuchi A, Katagiri H (2015) Annealing temperature dependence of photovoltaic properties of solar cells containing Cu2SnS3 thin films produced by co-evaporation. Phys Status Solidi B Basic Solid State Phys 252:1239–1243

    Article  Google Scholar 

  6. Shen YW, Li C, Huang R et al (2016) Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties. Sci Rep 6:32501

    Article  Google Scholar 

  7. Lokhande AC, Shelke A, Babar PT et al (2017) Novel antibacterial application of photovoltaic Cu2SnS3 (CTS) nanoparticles. RSC Adv 7:33737–33744

    Article  Google Scholar 

  8. Tan JMR, Lee YH, Pedireddy S, Baikie T, Ling XY, Wong LH (2014) Understanding the synthetic pathway of a single-phase quarternary semiconductor using surface-enhanced Raman scattering: a case of wurtzite Cu2ZnSnS4 nanoparticles. JACS 136:6684–6692

    Article  Google Scholar 

  9. Zhang RZ, Chen K, Du B, Reece MJ (2017) Screening for Cu–S based thermoelectric materials using crystal structure features. J Mater Chem A 5:5013–5019

    Article  Google Scholar 

  10. Kumar VP, Barbier T, Caignaert V et al (2017) Copper hyper-stoichiometry: the key for the optimization of thermoelectric properties in stannoidite Cu8+xFe3−xSn2S12. J Phys Chem C 121:16454–16461

    Article  Google Scholar 

  11. Lokhande AC, Gurav KV, Jo E, Lokhande CD, Kim JH (2016) Chemical synthesis of Cu2SnS3 (CTS) nanoparticles: a status review. J Alloys Compd 656:295–310

    Article  Google Scholar 

  12. Lokhande AC, Chalapathy RBV, He M et al (2016) Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: a status review. Sol Energy Mater Sol Cells 153:84–107

    Article  Google Scholar 

  13. Zhang ZA, Fu Y, Zhou CK, Li J, Lai YQ (2015) EDTA-Na2-assisted hydrothermal synthesis of Cu2SnS3 hollow microspheres and their lithium ion storage performances. Solid State Ion 269:62–66

    Article  Google Scholar 

  14. Okano S, Takeshita S, Isobe T (2015) Formation of Cu2SnS3 nanoparticles by sequential injection of tin and sulfur oleylamine solutions into Cu1.8S nanoparticle dispersion. Mater Lett 145:79–82

    Article  Google Scholar 

  15. Park Y, Jin H, Park J, Kim S (2014) Simultaneous phase and size control in the synthesis of Cu2SnS3 and Cu2ZnSnS4 nanocrystals. CrystEngComm 16:8642–8645

    Article  Google Scholar 

  16. Wang W, Shen HL, Li JZ (2013) Rapid synthesis of hollow CTS nanoparticles using microwave irradiation. Mater Lett 111:5–8

    Article  Google Scholar 

  17. Dong YC, He J, Li XR et al (2015) Synthesis and optimized sulfurization time of Cu2SnS3 thin films obtained from stacked metallic precursors for solar cell application. Mater Lett 160:468–471

    Article  Google Scholar 

  18. Tang ZG, Kosaka K, Uegaki H et al (2015) Investigation on evaporation and suppression of SnS during fabrication of Cu2SnS3 thin films. Phys Status Solidi A Appl Mater Sci 212:2289–2296

    Article  Google Scholar 

  19. Reddy TS, Amiruddin R, Kumar MCS (2015) Deposition and characterization of Cu2SnS3 thin films by co-evaporation for photovoltaic application. Sol Energy Mater Sol Cells 143:128–134

    Article  Google Scholar 

  20. Nakashima M, Yamaguchi T, Itani H, Sasano J, Izaki M (2015) Cu2SnS3 thin film solar cells prepared by thermal crystallization of evaporated Cu/Sn precursors in sulfur and tin atmosphere. Phys Status Solidi C 12:761–764

    Article  Google Scholar 

  21. Miyata Y, Nakamura S, Akaki Y (2015) Effects of H2S annealing on Cu–Sn–S thin films prepared from vacuum-evaporated Cu–Sn precursor. Phys Status Solidi C 12:765–768

    Article  Google Scholar 

  22. Tiwari D, Chaudhuri TK, Shripathi T, Deshpande U (2014) Synthesis of earth-abundant Cu2SnS3 powder using solid state reaction. J Phys Chem Solids 75:410–415

    Article  Google Scholar 

  23. Baláž P, Achimovičová M, Baláž M et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637

    Article  Google Scholar 

  24. Chen QM, Dou XM, Ni Y, Cheng SY, Zhuang SL (2012) Study and enhance the photovoltaic properties of narrow-bandgap Cu2SnS3 solar cell by pn junction interface modification. J Colloid Interface Sci 376:327–330

    Article  Google Scholar 

  25. Nomura T, Maeda T, Wada T (2014) Fabrication of Cu2SnS3 solar cells by screen-printing and high-pressure sintering process. Jpn J Appl Phys 53:05FW01

    Article  Google Scholar 

  26. Neves F, Correia JB, Hanada K (2016) Spark plasma sintering of Cu2SnS3 powders synthesized by mechanical alloying. Mater Lett 164:165–168

    Article  Google Scholar 

  27. Vanalakar SA, Agawane GL, Shin SW et al (2015) Non-vacuum mechanochemical route to the synthesis of Cu2SnS3 nano-ink for solar cell applications. Acta Mater 85:314–321

    Article  Google Scholar 

  28. Baláž M, Zorkovská A, Urakaev F et al (2016) Ultrafast mechanochemical synthesis of copper sulfides. RSC Adv 6:87836–87842

    Article  Google Scholar 

  29. Baláž P, Baláž M, Sayagués MJ et al (2017) Chalcogenide quaternary Cu2FeSnS4 nanocrystals for solar cells: explosive character of mechanochemical synthesis and environmental challenge. Crystals 7:367

    Article  Google Scholar 

  30. Baláž M, Zorkovská A, Blazquez JS, Daneu N, Baláž P (2017) Mechanochemistry of copper sulphides: phase interchanges during milling. J Mater Sci 52:11947–11961. https://doi.org/10.1007/s10853-017-1189-0

    Article  Google Scholar 

  31. Collord AD, Hillhouse HW (2015) Composition control and formation pathway of CZTS and CZTGS nanocrystal inks for kesterite solar cells. Chem Mater 27:1855–1862

    Article  Google Scholar 

  32. Ahmad R, Brandl M, Distaso M et al (2015) A comprehensive study on the mechanism behind formation and depletion of Cu2ZnSnS4 (CZTS) phases. CrystEngComm 17:6972–6984

    Article  Google Scholar 

  33. Lokhande AC, Pawar SA, Jo E et al (2016) Amines free environmentally friendly rapid synthesis of Cu2SnS3 nanoparticles. Opt Mater 58:268–278

    Article  Google Scholar 

  34. Onoda M, Chen XA, Sato A, Wada H (2000) Crystal structure and twinning of monoclinic Cu2SnS3. Mater Res Bull 35:1563–1570

    Article  Google Scholar 

  35. Baláž P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin

    Google Scholar 

  36. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  Google Scholar 

  37. Giancoli D (1984) In: Philips J (ed) Physics for scientists and engineers with modern physics, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  38. Serway RA (1998) Principles of physics. Saunders College Pub, Fort Worth

    Google Scholar 

  39. Casaca A, Lopes EB, Goncalves AP, Almeida M (2012) Electrical transport properties of CuS single crystals. J Phys: Condens Matter 24:015701

    Google Scholar 

  40. Jia Z, Chen QM, Chen J, Wang TT, Li ZQ, Dou XM (2015) The photovoltaic properties of novel narrow band gap Cu2SnS3 films prepared by a spray pyrolysis method. RSC Adv 5:28885–28891

    Article  Google Scholar 

  41. Lahlali S, Essaleh L, Belaqziz M, Chehouani H, Djessas K, Viallet B (2016) Analysis of electrical conduction mechanism in the high temperature range of the nanostructured photoabsorber Cu2SnS3. Physica B 500:161–164

    Article  Google Scholar 

  42. Groen JC, Peffer LAA, Perez-Ramirez J (2003) Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater 60:1–17

    Article  Google Scholar 

  43. Mathews NR, Benitez JT, Paraguay-Delgado F, Pal M, Huerta L (2013) Formation of Cu2SnS3 thin film by the heat treatment of electrodeposited SnS–Cu layers. J Mater Sci Mater Electron 24:4060–4067

    Article  Google Scholar 

  44. Raadik T, Grossberg M, Krustok J et al (2017) Temperature dependent photoreflectance study of Cu2SnS3 thin films produced by pulsed laser deposition. Appl Phys Lett 110:261105

    Article  Google Scholar 

  45. Bouaziz M, Amlouk M, Belgacem S (2009) Structural and optical properties of Cu2SnS3 sprayed thin films. Thin Solid Films 517:2527–2530

    Article  Google Scholar 

  46. Berg DM, Djemour R, Gutay L et al (2012) Raman analysis of monoclinic Cu2SnS3 thin films. Appl Phys Lett 100:192103

    Article  Google Scholar 

  47. Li JM, Huang JL, Zhang Y et al (2016) Solution-processed Cu2SnS3 thin film solar cells. RSC Adv 6:58786–58795

    Article  Google Scholar 

  48. Strohmeier BR, Leyden DE, Field RS, Hercules DM (1985) Surface spectroscopic characterization of Cu/Al2O3 catalysts. J Catal 94:514–530

    Article  Google Scholar 

  49. Krylova V, Andrulevicius M (2009) Optical, XPS and XRD studies of semiconducting copper sulfide layers on a polyamide film. Int J Photoenergy 2009:304308

    Article  Google Scholar 

  50. Ye MD, Wen XR, Zhang N, Guo WX, Liu XY, Lin CJ (2015) In situ growth of CuS and Cu1.8S nanosheet arrays as efficient counter electrodes for quantum dot-sensitized solar cells. J Mater Chem A 3:9595–9600

    Article  Google Scholar 

  51. Molla RA, Iqubal MA, Ghosh K, Kamaluddin SM Islam (2015) Nitrogen enriched mesoporous organic polymer anchored copper(II) material: an efficient and reusable catalyst for the synthesis of esters and amides from aromatic systems. Dalton Trans 44:6546–6559

    Article  Google Scholar 

  52. Chen XA, Wada H, Sato A, Mieno M (1998) Synthesis, electrical conductivity, and crystal structure of Cu4Sn7S16 and structure refinement of Cu2SnS3. J Solid State Chem 139:144–151

    Article  Google Scholar 

Download references

Acknowledgements

The present study was supported by the Slovak Research and Development Agency (Contract Nos. APVV-14-0103 and APVV-15-0438) and Slovak Grant Agency VEGA (Projects 2/0044/18, 2/0065/18, 2/0141/16, 2/0128/16 and 1/0340/18). The financial support of Ministry of Education Agency for structural funds of EU Project ITMS 26220220061 and from the Slovenian Research Agency (Research Core Funding No. P2-0091) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Baláž.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baláž, M., Daneu, N., Rajňák, M. et al. Rapid mechanochemical synthesis of nanostructured mohite Cu2SnS3 (CTS). J Mater Sci 53, 13631–13642 (2018). https://doi.org/10.1007/s10853-018-2499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2499-6

Keywords

Navigation