Skip to main content

Advertisement

Log in

Hybrid nanogenerator of BaTiO3 nanowires and CNTs for harvesting energy

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead-free piezoelectric nano-based generator with energy harvesting has drawn a great attention in the recent years. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant has been widely examined to realize nanogenerators. In this work, high-quality BaTiO3 (BTO) nanowires were prepared by hydrothermal synthesis as the piezoelectric material and then BTO/PVDF-based nanogenerators have been fabricated. Furthermore, the CNTs were added to improve the output voltage performance of the nanogenerator. It shows high performance of a maximum output voltage density of 7.3 V/cm2 and the stable current density of 3.3 nA/cm2. This hybrid nanogenerator with enhanced performance is a potential material for the application in harvesting energy, self-powered electronics and low-frequency capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yu H, He X, Ding w, Hu Y, Yang D, Lu S, Wu C, Zou H, Liu R, Lu C, Wang ZL (2017) A self-powered dynamic displacement monitoring system based on triboelectric accelerometer. Adv Energy Mater 7:1700565

    Article  Google Scholar 

  2. Wang J, Ding W, Pan L, Changsheng W, Hua Y, Yang L, Liao R, Wang Z (2018) Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano 12:3954–3963

    Article  Google Scholar 

  3. Lin ZH, Yang Y, Wu JM, Liu Y, Zhang F, Wang ZL (2012) BaTiO3 nanotubes-based flexible and transparent nanogenerators. J Phys Chem Lett 3:3599–3604

    Article  Google Scholar 

  4. Park KI, Son JH, Hwang GT, Jeong CK, Ryu J, Koo M, Choi I, Lee SH, Byun M, Wang ZL, Lee KJ (2014) Highly efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26:2514–2520

    Article  Google Scholar 

  5. Lee KY, Gupta MK, Kim SW (2015) Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 14:139–160

    Article  Google Scholar 

  6. Li Z, Wang ZL (2011) Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv Mater 23:84–89

    Article  Google Scholar 

  7. Lee S, Bae SH, Lin L, Yang Y, Park C, Kim SW, Cha SN, Kim H, Park YJ, Wang ZL (2013) Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv Funct Mater 23:2445–2449

    Article  Google Scholar 

  8. Xue X, Wang S, Guo W, Zhang Y, Wang ZL (2012) Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett 12:5048–5054

    Article  Google Scholar 

  9. Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133

    Article  Google Scholar 

  10. Chan C, Tran VH, Wang J, Fuh YK, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:726

    Article  Google Scholar 

  11. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 5771:242–246

    Article  Google Scholar 

  12. Park KI, Xu S, Liu Y, Hwang GT, Kang SJL, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10:4939–4943

    Article  Google Scholar 

  13. Nadaud K, Morini F, Dahiya AS et al (2018) Double buffer circuit for the characterization of piezoelectric nanogenerators based on ZnO nanowires. Appl Phys Lett 112:063901

    Article  Google Scholar 

  14. Han JK, Jeon DH, Cho SY et al (2017) Flexible piezoelectric generators by using the bending motion method of direct-grown-PZT nanoparticles on carbon nanotubes. Nanomaterials 7:308

    Article  Google Scholar 

  15. Chen D, Sharma T, Zhang JXJ (2014) Mesoporous surface control of PVDF thin films for enhanced piezoelectric energy generation. Sens Actuators A 216:196–201

    Article  Google Scholar 

  16. Cohen-Tanugi D, Akey A, Yao N (2010) Ultralow superharmonic resonance for functional nanowires. Nano Lett 10:852–859

    Article  Google Scholar 

  17. Nguyen TD, Deshmukh N, Nagarah JM, Kramer T, Purohit PK, Berry MJ, McAlpine MC (2012) Piezoelectric nanoribbons for monitoring cellular deformations. Nat Nanotechnol 7:587–593

    Article  Google Scholar 

  18. Xu S, Poirier G, Yao N (2012) PMN-PT nanowires with a very high piezoelectric constant. Nano Lett 1:602–607

    Google Scholar 

  19. Christman JA, Woolcott RR, Kingon AI, Nemanich RJ (1998) Piezoelectric measurements with atomic force microscopy. Appl Phys Lett 73:3851–3853

    Article  Google Scholar 

  20. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic press, London

    Google Scholar 

  21. Berlincourt D, Jaffe H (1958) Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys Rev 111:143–148

    Article  Google Scholar 

  22. Ni X, Wang F, Lin A, Xu Q, Yang Z, Qin Y (2013) Flexible nanogenerator based on single BaTiO3 Nanowire. Sci Adv Mater 5:1781–1787

    Article  Google Scholar 

  23. Faust D, Lakes R (2015) Temperature and substrate dependence of piezoelectric sensitivity for PVDF films. Ferroelectric 481:1–9

    Article  Google Scholar 

  24. Abolhasani MM, Naebe M, Jalali-Arani A, Guo Q (2014) Crystalline structures and α → β and γ polymorphs transformation induced by nanoclay in PVDF-based nanocomposite. NANO 09:1450065

    Article  Google Scholar 

  25. Martins P, Costa CM, Ferreira JCC, Lanceros-Mendez S (2012) Correlation between crystallization kinetics and electroactive polymer phase nucleation in ferrite/poly(vinylidene fluoride) magnetoelectric nanocomposites. J Phys Chem B 116:794–801

    Article  Google Scholar 

  26. Milani A, Castiglioni C, Radice S (2015) FT-IR spectroscopy and DFT calculations on fluorinated macromer diols: IR intensity and association properties. J Phys Chem B 119:4888–4897

    Article  Google Scholar 

  27. Xing C, Zhao L, You J, Dong W, Cao X, Li Y (2012) Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 116:8312–8320

    Article  Google Scholar 

  28. Chen X, Han M, Chen H, Cheng X, Song Y, Su Z, Jiang Y, Zhang H (2017) A wave shaped hybrid piezoelectric and triboelectric nanogenerator based on P(VDF-TrFE) nanofibers. Nanoscale 9:1263–1270

    Article  Google Scholar 

  29. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  Google Scholar 

  30. Gruner G (2006) Carbon nanotube films for transparent and plastic electronics. J Mater Chem 16:3533

    Article  Google Scholar 

  31. Zhong J, Zhang Y, Zhong Q, Hu Q, Hu B, Wang ZL, Zhou J (2014) Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8:6273–6280

    Article  Google Scholar 

  32. Suo G, Yu Y, Zhang Z, Wang S, Zhao P, Li J, Wang X (2016) Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film. ACS Appl Mater Interfaces 8:34335–34341

    Article  Google Scholar 

  33. Yan J, Jeong YG (2016) High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl Mater Interfaces 8:15700–15709

    Article  Google Scholar 

  34. Koka A, Zhou Z, Tang H, Sodano HA (2014) Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications. Nanotechnology 25:375603

    Article  Google Scholar 

  35. Miranda L, Boulahya K, Sinclair DC, Hernando M, Varela A, GonzalezCalbet JM, Parras M (2012) Structure–property relations in an ion deficient 5H- and 3C-polytype Ba(Ti, Co)O3–δ perovskites. J Mater Chem 22:15092–15103

    Article  Google Scholar 

  36. Wu L, Jain A, Brown DW, Stoica GM, Agnew SR, Clausen B, Fielden DE, Liaw PK (2008) Twinning–detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Mater 56:688–695

    Article  Google Scholar 

  37. Liu X, Kuang X, Xu S, Wang X (2017) High-sensitivity piezoresponse force microscopy studies of single polyvinylidene fluoride nanofibers. Mater Lett 191:189–192

    Article  Google Scholar 

  38. Wang JH, Chen CQ (2015) Asymptotic effective piezoelectric coefficient solution of piezoresponse force microscopy for a transversely isotropic piezoelectric film. MATEC Web Conf 43:01006

    Article  Google Scholar 

  39. Vasilev S, Zelenovskiy P, Vasileva D, Nuraeva A, Shur VY, Kholkin AL (2016) Piezoelectric properties of diphenylalanine microtubes prepared from the solution. J Phys Chem Solids 93:68–72

    Article  Google Scholar 

  40. Sharma M, Srinivas V, Madras G, Bose S (2016) Outstanding dielectric constant and piezoelectric coefficient in electrospun nanofiber mats of PVDF containing silver decorated multiwall carbon nanotubes: assessing through piezoresponse force microscopy. RSC Adv 6:6251–6258

    Article  Google Scholar 

  41. Park Kwi-Il, Lee Minbaek, Liu Ying, Moon San, Hwang Geon-Tae, Zhu Guang, Kim Ji Eun, Kim Sang Ouk, Kim Do Kyung, Wang Zhong Lin, Lee Keon Jae (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2937

    Article  Google Scholar 

  42. Zhang M, Yang J, Si C, Han G, Zhao Y, Ning J (2015) Research on the piezoelectric properties of AlN thin films for MEMS applications. Micromachines 6:1236–1248

    Article  Google Scholar 

  43. Fan YJ, Meng XS, Li HY, Kuang SY, Zhang L, Wu Y, Wang ZL, Zhu G (2016) Stretchable porous carbon nanotube-elastomer hybrid nanocomposite for harvesting mechanical energy. Adv Mater 29:1603115

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51671098), the Natural Science Foundation of Gansu Province (No. 17JR5RA210) and the Fundamental Research Funds for the Central Universities (lzujbky-2015-122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Xi or Yalu Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, X., Guo, X. et al. Hybrid nanogenerator of BaTiO3 nanowires and CNTs for harvesting energy. J Mater Sci 53, 13081–13089 (2018). https://doi.org/10.1007/s10853-018-2540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2540-9

Keywords

Navigation