Skip to main content
Log in

Characterization of SLM-fabricated Inconel 718 after solid solution and precipitation hardening heat treatments

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure and hardness of solid solution heat treated (ST) and precipitation hardened Inconel 718 parts fabricated with selective laser melting are investigated. The temperature range for the ST is between 970 and 1250 °C, while the two-step precipitation hardening was done at 760 and 650 °C, each for 10 h. The result demonstrates the effects of homogenization and consequently the effects of aging on the microstructure and hardness of the samples studied. Complete recrystallization occurred for the specimens ST at and higher than 1180 °C. The grain structures of ST specimens qualitatively appear identical with those specimens ST and aged, implying that aging does not induce noticeable changes in the grain structures. Precipitation hardening generates uniformly distributed good yield of ellipsoidal γ″ precipitates with average size of minor and major axis of 11–17 nm and 48–81 nm, respectively. In addition, smaller quantities of γ′ precipitates with an average size of 24 nm are observed for the aged specimens. Increasing the hold time of ST for a particular temperature leads to coarsening of γ″ precipitates, which have a negative impact on the hardness of the material. After aging, the hardness of the specimens is increased by 32–43% relative to that of the as-printed specimen. The increments in hardness for the specimens ST at and lower than 1100 °C (and aged) are the result of the combined effects of hardening precipitates and strain associated with the lattice defects, such as dislocation networks and subgrain boundaries that remain undissolved. The microstructures of the specimens ST at higher temperatures (e.g., 1250 °C) have attained minimal lattice defects due to completed recrystallization. Hence, the increment in hardness for these specimens after aging is mainly due to the hardening precipitates. Needle-shaped δ phase is also precipitated along/near grain boundaries during solid solution heat treatment at 970 °C. Formation of δ phase can consume a lot of Nb, which otherwise be used for the precipitation of hardening phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Radavich JF (1989) The physical metallurgy of cast and wrought alloy 718. In: Superalloy 718-metallurgy and applications, pp 229–240

  2. Dehmas M, Lacaze J, Niang A, Viguier B (2011) TEM study of high-temperature precipitation of delta phase in Inconel 718 alloy. Adv Mater Sci Eng 2011:1–9

    Article  Google Scholar 

  3. Slama C, Abdellaoui M (2000) Structural characterization of the aged Inconel 718. J Alloys Compd 306:277–284

    Article  CAS  Google Scholar 

  4. Sundararaman M, Mukhopadhyay P, Banerjee S (1992) Some aspects of the precipitation of metastable intermetallic phases in inconel 718. Metall Trans A 23A:2015–2027

    Article  CAS  Google Scholar 

  5. Cozar R, Pineau A (1973) Morphology of y’ and y” precipitates and thermal stability of inconel 718 type alloys. Metall Trans 4:47–59

    Article  CAS  Google Scholar 

  6. Tucho WM, Cuvillier P, Sjolyst-Kverneland A, Hansen V (2017) Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater Sci Eng A 689:220–232

    Article  CAS  Google Scholar 

  7. ASTM F3055-14a (2014) Standard specification for additive manufacturing nickel alloy (UNS N07718) with Powder Bed Fusion. www.astm.org

  8. Slama C, Servant C, Cizeron G (1997) Aging of the Inconel 718 alloy between 500 and 750 °C. J Mater Res 12(09):2298–2316

    Article  CAS  Google Scholar 

  9. Tucho WM, Lysne VH, Austbø H, Sjolyst-Kverneland A, Hansen V (2018) Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J Alloys Compd 740:910–925

    Article  CAS  Google Scholar 

  10. Dubiel B, Kruk A, Stepniowska E, Cempura G, Geiger D, Formanek P, Hernandez J, Midgley P, Czyrska-Filemonowicz A (2009) TEM, HRTEM, electron holography and electron tomography studies of gamma’ and gamma’’ nanoparticles in Inconel 718 superalloy. J Microsc 236(2):149–157

    Article  CAS  Google Scholar 

  11. Hong SJ, Chen WP, Wang TW (2001) A diffraction study of the γ″ phase in Inconel 718 superalloy. Metall Mater Trans A 32A:1887–1901

    Article  CAS  Google Scholar 

  12. Paulonis DF, Oblak JM, Duvall DS (1969) Precipitation in nickel-base alloy 718. Trans Amer Soc Metal 62:611–622

    CAS  Google Scholar 

  13. Agnoli A, Bernacki M, Logé R, Franchet J-M, Laigo J, Bozzolo N (2015) Selective growth of low stored energy grains during δ sub-solvus annealing in the Inconel 718 nickel-based superalloy. Metall Mater Trans A 46(9):4405–4421

    Article  CAS  Google Scholar 

  14. Zhang D, Niu W, Cao X, Liu Z (2015) Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy. Mater Sci Eng A 644:32–40

    Article  CAS  Google Scholar 

  15. Choi HS, Choi J (1972) Precipitation in 718 alloys. J Korean Nucl Soc 4(3):203–213

    CAS  Google Scholar 

  16. Popovich VA, Borisov EV, Popovich AA, Sufiiarov VS, Masaylo DV, Alzina L (2017) Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting. Mater Des 131:12–22

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Eivind Strømland and Tor Nordheim from PROMET for supplying the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wakshum M. Tucho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tucho, W.M., Hansen, V. Characterization of SLM-fabricated Inconel 718 after solid solution and precipitation hardening heat treatments. J Mater Sci 54, 823–839 (2019). https://doi.org/10.1007/s10853-018-2851-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2851-x

Keywords

Navigation