Skip to main content

Advertisement

Log in

Mechanistic understanding and strategies to design interfaces of solid electrolytes: insights gained from transmission electron microscopy

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solid electrolytes (SEs) have gained increased attention for their promise to enable higher volumetric energy density and enhanced safety required for future battery systems. SEs are not only a key constituent in all-solid-state batteries, but also important “protectors” of Li metal anodes in next-generation battery configurations, such as Li–air, Li–S, and redox flow batteries. The impedance at interfaces associated with SEs, e.g., internal grain/phase boundaries and their interfacial stability with electrodes, represents two key factors limiting the performance of SEs, yet analyzing these interfaces experimentally at the nano/atomic scale is generally challenging. A mechanistic understanding of the possible instability at interfaces and propagation of interfacial resistance will pave the way to the design of high-performance SE-based batteries. In this review, we briefly introduce the fundamentals of SEs and challenges associated with their interfaces. Next, we discuss experimental techniques that allow for atomic-to-microscale understanding of ion transport and stability in SEs and at their interfaces, specifically highlighting the applications of state-of-the-art and emerging ex situ and in situ transmission electron microscopy (TEM) and scanning TEM (STEM). Representative examples from the current literature that exemplify recent fundamental insights gained from these S/TEM techniques are highlighted. Applicable strategies to improve ion conduction and interfaces in SE-based batteries are also discussed. This review concludes by highlighting opportunities for future research that will significantly promote the fundamental understanding of SEs, specifically further developments in S/TEM techniques that will bring new insights into the design of high-performance interfaces for future electrical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dudney NJ, West WC, Nanda J (2016) Handbook of solid state batteries. World Scientific, Singapore

    Google Scholar 

  2. Hagenmuller P, Van Gool W (2015) Solid electrolytes: general principles, characterization, materials, applications. Elsevier, Amsterdam

    Google Scholar 

  3. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540

    Google Scholar 

  4. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279

    Google Scholar 

  5. Barghamadi M, Best AS, Bhatt AI, Hollenkamp AF, Musameh M, Rees RJ, Rüther T (2014) Lithium–sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution? Energy Environ Sci 7(12):3902–3920

    Google Scholar 

  6. Berbano SS, Mirsaneh M, Lanagan MT, Randall CA (2013) Lithium thiophosphate glasses and glass-ceramics as solid electrolytes: processing, microstructure, and properties. Int J Appl Glass Sci 4(4):414–425

    Google Scholar 

  7. Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C (2013) Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc 135(3):975–978

    Google Scholar 

  8. Hood ZD, Wang H, Pandian AS, Peng R, Gilroy KD, Chi M, Liang C, Xia Y (2018) Fabrication of sub-micrometer-thick solid electrolyte membranes of β-Li3PS4 via tiled assembly of nanoscale, plate-like building blocks. Adv Energy Mater 8:1800014

    Google Scholar 

  9. Wang H, Hood ZD, Xia Y, Liang C (2016) Fabrication of ultrathin solid electrolyte membranes of β-Li3PS4 nanoflakes by evaporation-induced self-assembly for all-solid-state batteries. J Mater Chem A 4(21):8091–8096

    Google Scholar 

  10. Yamane H, Shibata M, Shimane Y, Junke T, Seino Y, Adams S, Minami K, Hayashi A, Tatsumisago M (2007) Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion 178(15):1163–1167

    Google Scholar 

  11. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K (2011) A lithium superionic conductor. Nat Mater 10(9):682–686

    Google Scholar 

  12. Kuhn A, Duppel V, Lotsch BV (2013) Tetragonal Li10GeP2S12 and Li7GePS8—exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ Sci 6(12):3548–3552

    Google Scholar 

  13. Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7(2):627–631

    Google Scholar 

  14. Rao RP, Adams S (2011) Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Physica Status Solidi (a) 208(8):1804–1807

    Google Scholar 

  15. Wolfenstine J, Rangasamy E, Allen JL, Sakamoto J (2012) High conductivity of dense tetragonal Li7La3Zr2O12. J Power Sources 208:193–196

    Google Scholar 

  16. Rangasamy E, Wolfenstine J, Sakamoto J (2012) The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion 206:28–32

    Google Scholar 

  17. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Gy A (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137(4):1023–1027

    Google Scholar 

  18. Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86(10):689–693

    Google Scholar 

  19. Bohnke O, Bohnke C, Fourquet J (1996) Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ion 91(1–2):21–31

    Google Scholar 

  20. Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum titanates: a review. Chem Mater 15(21):3974–3990

    Google Scholar 

  21. Boukamp B, Huggins R (1978) Fast ionic conductivity in lithium nitride. Mater Res Bull 13(1):23–32

    Google Scholar 

  22. Whittingham MS, Huggins RA (1971) Measurement of sodium ion transport in beta alumina using reversible solid electrodes. J Chem Phys 54(1):414–416

    Google Scholar 

  23. Li J, Ma C, Chi M, Liang C, Dudney NJ (2015) Solid electrolyte: the key for high-voltage lithium batteries. Adv Energy Mater 5(4):1401408

    Google Scholar 

  24. Taheri ML, Stach EA, Arslan I, Crozier PA, Kabius BC, LaGrange T, Minor AM, Takeda S, Tanase M, Wagner JB (2016) Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170:86–95

    Google Scholar 

  25. Ma C, Chi M (2016) Novel solid electrolytes for Li-ion batteries: a perspective from electron microscopy studies. Front Energy Res 4:23

    Google Scholar 

  26. Yuan Y, Amine K, Lu J, Shahbazian-Yassar R (2017) Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat Commun 8:15806

    Google Scholar 

  27. Goodenough JB, Singh P (2015) Review—solid electrolytes in rechargeable electrochemical cells. J Electrochem Soc 162(14):A2387–A2392

    Google Scholar 

  28. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43(13):4714–4727

    Google Scholar 

  29. Wu B, Wang S, Evans WJ IV, Deng DZ, Yang J, Xiao J (2016) Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. J Mater Chem A 4(40):15266–15280

    Google Scholar 

  30. Bachman JC, Muy S, Grimaud A, Chang H-H, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P (2015) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162

    Google Scholar 

  31. Lin Z, Liang C (2015) Lithium–sulfur batteries: from liquid to solid cells. J Mater Chem A 3(3):936–958

    Google Scholar 

  32. Park JH, Suh K, Rohman MR, Hwang W, Yoon M, Kim K (2015) Solid lithium electrolytes based on an organic molecular porous solid. Chem Commun 51(45):9313–9316

    Google Scholar 

  33. Ren Y, Chen K, Chen R, Liu T, Zhang Y, Nan CW (2015) Oxide electrolytes for lithium batteries. J Am Ceram Soc 98(12):3603–3623

    Google Scholar 

  34. Varzi A, Raccichini R, Passerini S, Scrosati B (2016) Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J Mater Chem A 4(44):17251–17259

    Google Scholar 

  35. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386

    Google Scholar 

  36. Chen R, Qu W, Guo X, Li L, Wu F (2016) The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater Horiz 3(6):487–516

    Google Scholar 

  37. Bates J, Dudney N, Neudecker B, Ueda A, Evans C (2000) Thin-film lithium and lithium–ion batteries. Solid State Ion 135(1):33–45

    Google Scholar 

  38. Dudney NJ (2005) Solid-state thin-film rechargeable batteries. Mater Sci Eng B 116(3):245–249

    Google Scholar 

  39. Girishkumar G, McCloskey B, Luntz A, Swanson S, Wilcke W (2010) Lithium − air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203

    Google Scholar 

  40. Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76(3):563–588

    Google Scholar 

  41. Traversa E (1995) Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens Actuat B Chem 23(2–3):135–156

    Google Scholar 

  42. Struzik M, Garbayo I, Pfenninger R, Rupp JL (2018) A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring. Adv Mater 30:1804098

    Google Scholar 

  43. Jensen J, Krebs FC (2014) From the bottom up—flexible solid state electrochromic devices. Adv Mater 26(42):7231–7234

    Google Scholar 

  44. Zhang Z, Shao Y, Lotsch B, Hu Y-S, Li H, Janek J, Nazar LF, Nan C-W, Maier J, Armand M, Chen L (2018) New horizons for inorganic solid state ion conductors. Energy Environ Sci 11(8):1945–1976

    Google Scholar 

  45. Janek J, Zeier WG (2016) A solid future for battery development. Nat Energy 1:16141

    Google Scholar 

  46. Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G (2015) Interface stability in solid-state batteries. Chem Mater 28(1):266–273

    Google Scholar 

  47. Luntz AC, Voss J, Reuter K (2015) Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett 6(22):4599–4604

    Google Scholar 

  48. Zhu Y, He X, Mo Y (2015) Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 7(42):23685–23693

    Google Scholar 

  49. Hood ZD, Kates C, Kirkham M, Adhikari S, Liang C, Holzwarth N (2016) Structural and electrolyte properties of Li4P2S6. Solid State Ion 284:61–70

    Google Scholar 

  50. Lepley N, Holzwarth N (2015) Modeling interfaces between solids: application to Li battery materials. Phys Rev B 92(21):214201

    Google Scholar 

  51. Liu X, Chen Y, Hood ZD, Ma C, Yu S, Sharafi A, Wang H, An K, Sakamoto J, Siegel DJ (2019) Elucidating the mobility of H+ and Li+ ions in (Li6.25−xHxAl0.25)La3Zr2O12 via correlative neutron and electron spectroscopy. Energy Environ Sci 12:945–951

    Google Scholar 

  52. Zheng Z, Wu H-H, Chen H, Cheng Y, Zhang Q, Xie Q, Wang L, Zhang K, Wang M-S, Peng D-L (2018) Fabrication and understanding of Cu3Si–Si@ carbon@ graphene nanocomposites as high-performance anodes for lithium-ion batteries. Nanoscale 10(47):22203–22214

    Google Scholar 

  53. Jurng S, Brown ZL, Kim J, Lucht BL (2018) Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ Sci 11(9):2600–2608

    Google Scholar 

  54. Liu X, Gu L (2018) Advanced transmission electron microscopy for electrode and solid-electrolyte materials in lithium-ion batteries. Small Methods 2(8):1800006

    Google Scholar 

  55. Gao X, Ding Y, Qu Q, Liu G, Battaglia VS, Zheng H (2018) Optimizing solid electrolyte interphase on graphite anode by adjusting the electrolyte solution structure with ionic liquid. Electrochim Acta 260:640–647

    Google Scholar 

  56. Harrison KL, Zavadil KR, Hahn NT, Meng X, Elam JW, Leenheer A, Zhang J-G, Jungjohann KL (2017) Lithium self-discharge and its prevention: direct visualization through in situ electrochemical scanning transmission electron microscopy. ACS Nano 11(11):11194–11205

    Google Scholar 

  57. Zeng Z, Zheng W, Zheng H (2017) Visualization of colloidal nanocrystal formation and electrode–electrolyte interfaces in liquids using TEM. Acc Chem Res 50(8):1808–1817

    Google Scholar 

  58. Zheng J, Tang M, Hu YY (2016) Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem 128(40):12726–12730

    Google Scholar 

  59. Gobet M, Greenbaum S, Sahu G, Liang C (2014) Structural evolution and Li dynamics in nanophase Li3PS4 by solid-state and pulsed-field gradient NMR. Chem Mater 26(11):3558–3564

    Google Scholar 

  60. Blanc F, Leskes M, Grey CP (2013) In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Acc Chem Res 46(9):1952–1963

    Google Scholar 

  61. Pecher O, Carretero-González J, Griffith KJ, Grey CP (2017) Materials’ methods: NMR in battery research. Chem Mater 29(1):213–242

    Google Scholar 

  62. Black J, Strelcov E, Balke N, Kalinin SV (2014) Electrochemistry at the nanoscale: the force dimension. Electrochem Soc Interface 23(2):53–59

    Google Scholar 

  63. Balke N, Jesse S, Kim Y, Adamczyk L, Tselev A, Ivanov IN, Dudney NJ, Kalinin SV (2010) Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. Nano Lett 10(9):3420–3425

    Google Scholar 

  64. Kobayashi T, Yamada A, Kanno R (2008) Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON. Electrochim Acta 53(15):5045–5050

    Google Scholar 

  65. Bron P, Roling B, Dehnen S (2017) Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes. J Power Sources 352:127–134

    Google Scholar 

  66. Basappa RH, Ito T, Yamada H (2017) Contact between garnet-type solid electrolyte and lithium metal anode: influence on charge transfer resistance and short circuit prevention. J Electrochem Soc 164(4):A666–A671

    Google Scholar 

  67. Rangasamy E, Liu Z, Gobet M, Pilar K, Sahu G, Zhou W, Wu H, Greenbaum S, Liang C (2015) An iodide-based Li7P2S8I superionic conductor. J Am Chem Soc 137(4):1384–1387

    Google Scholar 

  68. Balke N, Jesse S, Kim Y, Adamczyk L, Ivanov IN, Dudney NJ, Kalinin SV (2010) Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale. ACS Nano 4(12):7349–7357

    Google Scholar 

  69. Mariappan CR, Yada C, Rosciano F, Roling B (2011) Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics. J Power Sources 196(15):6456–6464

    Google Scholar 

  70. Mariappan CR, Gellert M, Yada C, Rosciano F, Roling B (2012) Grain boundary resistance of fast lithium ion conductors: comparison between a lithium-ion conductive Li–Al–Ti–P–O-type glass ceramic and a Li1.5Al0.5Ge1.5P3O12 ceramic. Electrochem Commun 14(1):25–28

    Google Scholar 

  71. Gellert M, Gries KI, Yada C, Rosciano F, Volz K, Roling B (2012) Grain boundaries in a lithium aluminum titanium phosphate-type fast lithium ion conducting glass ceramic: microstructure and nonlinear ion transport properties. J Phys Chem C 116(43):22675–22678

    Google Scholar 

  72. Yamada H, Tsunoe D, Shiraishi S, Isomichi G (2015) Reduced grain boundary resistance by surface modification. J Phys Chem C 119(10):5412–5419

    Google Scholar 

  73. Yamada H, Takemoto K (2016) Local structure and composition change at surface of lithium-ion conducting solid electrolyte. Solid State Ion 285:41–46

    Google Scholar 

  74. Ma C, Chen K, Liang C, Nan C-W, Ishikawa R, More K, Chi M (2014) Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ Sci 7(5):1638–1642

    Google Scholar 

  75. Catti M (2007) First-principles modeling of lithium ordering in the LLTO (LixLa2/3−x/3TiO3) superionic conductor. Chem Mater 19(16):3963–3972

    Google Scholar 

  76. Inaguma Y, Katsumata T, Itoh M, Morii Y, Tsurui T (2006) Structural investigations of migration pathways in lithium ion-conducting La2/3−xLi3xTiO3 perovskites. Solid State Ion 177(35):3037–3044

    Google Scholar 

  77. Alexander KC, Ganesh P, Chi M, Kent P, Sumpter BG (2016) Grain boundary stability and influence on ionic conductivity in a disordered perovskite—a first-principles investigation of lithium lanthanum titanate. MRS Commun 6(4):455–463

    Google Scholar 

  78. Qian D, Ma C, More KL, Meng YS, Chi M (2015) Advanced analytical electron microscopy for lithium-ion batteries. NPG Asia Mater 7(6):e193

    Google Scholar 

  79. Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M (2015) Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl Mater Interfaces 7(3):2073–2081

    Google Scholar 

  80. David IN, Thompson T, Wolfenstine J, Allen JL, Sakamoto J (2015) Microstructure and Li-ion conductivity of hot-pressed cubic Li7La3Zr2O12. J Am Ceram Soc 98(4):1209–1214

    Google Scholar 

  81. Tenhaeff WE, Rangasamy E, Wang Y, Sokolov AP, Wolfenstine J, Sakamoto J, Dudney NJ (2014) Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes. ChemElectroChem 1(2):375–378

    Google Scholar 

  82. Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R (2017) Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci 88:325–411

    Google Scholar 

  83. Yu S, Schmidt RD, Garcia-Mendez R, Herbert E, Dudney NJ, Wolfenstine JB, Sakamoto J, Siegel DJ (2015) Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater 28(1):197–206

    Google Scholar 

  84. Canepa P, Dawson JA, Sai Gautam G, Statham JM, Parker SC, Islam MS (2018) Particle morphology and lithium segregation to surfaces of the Li7La3Zr2O12 solid electrolyte. Chem Mater 30(9):3019–3027

    Google Scholar 

  85. Lv D, Zheng J, Li Q, Xie X, Ferrara S, Nie Z, Mehdi LB, Browning ND, Zhang JG, Graff GL (2015) High energy density lithium–sulfur batteries: challenges of thick sulfur cathodes. Adv Energy Mater 5(16):1402290

    Google Scholar 

  86. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537

    Google Scholar 

  87. Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194–206

    Google Scholar 

  88. Alvarado J, Schroeder MA, Pollard TP, Wang X, Lee JZ, Zhang M, Wynn T, Ding M, Borodin OA, Meng S (2019) Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ Sci 12:780–794

    Google Scholar 

  89. Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61(3):759–770

    Google Scholar 

  90. Kim KH, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher CA, Hirayama T, Murugan R, Ogumi Z (2011) Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J Power Sources 196(2):764–767

    Google Scholar 

  91. Nam YJ, Cho S-J, Oh DY, Lim J-M, Kim SY, Song JH, Lee Y-G, Lee S-Y, Jung YS (2015) Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett 15(5):3317–3323

    Google Scholar 

  92. Ohta S, Kobayashi T, Seki J, Asaoka T (2012) Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J Power Sources 202:332–335

    Google Scholar 

  93. Takada K, Ohta N, Zhang L, Xu X, Hang BT, Ohnishi T, Osada M, Sasaki T (2012) Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ion 225:594–597

    Google Scholar 

  94. Pan J, Cheng Y-T, Qi Y (2015) General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. Phys Rev B 91(13):134116

    Google Scholar 

  95. Han F, Zhu Y, He X, Mo Y, Wang C (2016) Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater 6(8):1501590

    Google Scholar 

  96. Lewis JA, Cortes FJQ, Boebinger MG, Tippens J, Marchese TS, Kondekar N, Liu X, Chi M, McDowell MT (2019) Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett 4(2):591–599

    Google Scholar 

  97. Augustyn V, McDowell MT, Vojvodic A (2018) Toward an atomistic understanding of solid-state electrochemical interfaces for energy storage. Joule 2(11):2189–2193

    Google Scholar 

  98. Yu X, Bates J, Jellison G, Hart F (1997) A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc 144(2):524–532

    Google Scholar 

  99. Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More KL, Dudney NJ, Chi M (2016) Interfacial stability of li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett 16(11):7030–7036

    Google Scholar 

  100. Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J (2015) Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ion 278:98–105

    Google Scholar 

  101. Zarabian M, Bartolini M, Pereira-Almao P, Thangadurai V (2017) X-ray photoelectron spectroscopy and AC impedance spectroscopy studies of Li–La–Zr–O solid electrolyte thin film/LiCoO2 cathode interface for all-solid-state Li batteries. J Electrochem Soc 164(6):A1133–A1139

    Google Scholar 

  102. Schwöbel A, Hausbrand R, Jaegermann W (2015) Interface reactions between LiPON and lithium studied by in situ X-ray photoemission. Solid State Ion 273:51–54

    Google Scholar 

  103. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46(41):7778–7781

    Google Scholar 

  104. Cussen EJ (2010) Structure and ionic conductivity in lithium garnets. J Mater Chem 20(25):5167–5173

    Google Scholar 

  105. Wolfenstine J, Allen J, Read J, Sakamoto J (2013) Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature. J Mater Sci 48(17):5846–5851. https://doi.org/10.1007/s10853-013-7380-z

    Google Scholar 

  106. Wenzel S, Randau S, Leichtweiß T, Weber DA, Sann J, Zeier WG, Jr J (2016) Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater 28(7):2400–2407

    Google Scholar 

  107. Auvergniot J, Cassel A, Foix D, Viallet V, Seznec V, Dedryvère R (2017) Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: an XPS study. Solid State Ion 300:78–85

    Google Scholar 

  108. Hartmann P, Leichtweiss T, Busche MR, Schneider M, Reich M, Sann J, Adelhelm P, Jr J (2013) Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J Phys Chem C 117(41):21064–21074

    Google Scholar 

  109. Li Y, Zhou W, Chen X, Lü X, Cui Z, Xin S, Xue L, Jia Q, Goodenough JB (2016) Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc Natl Acad Sci 113(47):13313–13317

    Google Scholar 

  110. Wood KN, Steirer KX, Hafner SE, Ban C, Santhanagopalan S, Lee S-H, Teeter G (2018) Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S–P2S5 solid-state electrolytes. Nat Commun 9(1):2490

    Google Scholar 

  111. Dudney NJ (2017) Evolution of the lithium morphology from cycling of thin film solid state batteries. J Electroceram 28(2–4):222–229

    Google Scholar 

  112. Sakuda A, Hayashi A, Tatsumisago M (2009) Interfacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater 22(3):949–956

    Google Scholar 

  113. Zhu Y, He X, Mo Y (2016) First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 4:3253–3266

    Google Scholar 

  114. West WC, Hood ZD, Adhikari SP, Liang C, Lachgar A, Motoyama M, Iriyama Y (2016) Reduction of charge-transfer resistance at the solid electrolyte–electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source. J Power Sources 312:116–122

    Google Scholar 

  115. Ohta N, Takada K, Zhang L, Ma R, Osada M, Sasaki T (2006) Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater 18(17):2226–2229

    Google Scholar 

  116. Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T (2007) LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem Commun 9(7):1486–1490

    Google Scholar 

  117. Takada K, Ohta N, Zhang L, Fukuda K, Sakaguchi I, Ma R, Osada M, Sasaki T (2008) Interfacial modification for high-power solid-state lithium batteries. Solid State Ion 179(27):1333–1337

    Google Scholar 

  118. Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M (2011) Improvement of electrochemical performance of all-solid-state lithium secondary batteries by surface modification of LiMn2O4 positive electrode. Solid State Ion 192(1):304–307

    Google Scholar 

  119. Kato T, Hamanaka T, Yamamoto K, Hirayama T, Sagane F, Motoyama M, Iriyama Y (2014) In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J Power Sources 260:292–298

    Google Scholar 

  120. Meng X, Yang XQ, Sun X (2012) Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv Mater 24(27):3589–3615

    Google Scholar 

  121. Wang Z, Santhanagopalan D, Zhang W, Wang F, Xin HL, He K, Li J, Dudney NJ, Meng YS (2016) In situ STEM/EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett 16(6):3760–3767

    Google Scholar 

  122. Haruyama J, Sodeyama K, Han L, Takada K, Tateyama Y (2014) Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem Mater 26(14):4248–4255

    Google Scholar 

  123. Kitaura H, Hayashi A, Tadanaga K, Tatsumisago M (2010) All-solid-state lithium secondary batteries using LiMn2O4 electrode and Li2S–P2S5 solid electrolyte. J Electrochem Soc 157(4):A407–A411

    Google Scholar 

  124. Zhang W, Richter FH, Culver SP, Leichtweiss T, Lozano JG, Dietrich C, Bruce PG, Zeier WG, Janek J (2018) Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium ion battery. ACS Appl Mater Interfaces 10(26):22226–22236

    Google Scholar 

  125. Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2010) LiCoO2 electrode particles coated with Li2S–P2S5 solid electrolyte for all-solid-state batteries. Electrochem Solid-State Lett 13(6):A73–A75

    Google Scholar 

  126. Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber DA, Sann J, Zeier WG, Janek J (2017) (Electro) chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J Mater Chem A 5(20):9929–9936

    Google Scholar 

  127. Nomura Y, Yamamoto K, Hirayama T, Ohkawa M, Igaki E, Hojo N, Saitoh K (2018) Quantitative operando visualization of electrochemical reactions and Li ions in all-solid-state batteries by STEM-EELS with hyperspectral image analyses. Nano Lett 18(9):5892–5898

    Google Scholar 

  128. Yamamoto K, Iriyama Y, Hirayama T (2017) Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography. Microscopy 66(1):50–61

    Google Scholar 

  129. Linck M, Freitag B, Kujawa S, Lehmann M, Niermann T (2012) State of the art in atomic resolution off-axis electron holography. Ultramicroscopy 116:13–23

    Google Scholar 

  130. Cooper D, Pan C-T, Haigh S (2014) Atomic resolution electrostatic potential mapping of graphene sheets by off-axis electron holography. J Appl Phys 115(23):233709

    Google Scholar 

  131. Winkler F, Tavabi AH, Barthel J, Duchamp M, Yucelen E, Borghardt S, Kardynal BE, Dunin-Borkowski RE (2017) Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe2. Ultramicroscopy 178:38–47

    Google Scholar 

  132. Winkler F, Barthel J, Tavabi AH, Borghardt S, Kardynal BE, Dunin-Borkowski RE (2018) Absolute scale quantitative off-axis electron holography at atomic resolution. Phys Rev Lett 120(15):156101

    Google Scholar 

  133. Okumura T, Nakatsutsumi T, Ina T, Orikasa Y, Arai H, Fukutsuka T, Iriyama Y, Uruga T, Tanida H, Uchimoto Y (2011) Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode–solid electrolyte interface for all solid state lithium ion batteries. J Mater Chem 21(27):10051–10060

    Google Scholar 

  134. Sang L, Haasch RT, Gewirth AA, Nuzzo RG (2017) Evolution at the solid electrolyte/Au electrode interface during lithium deposition and stripping. Chem Mater 29(7):3029–3037

    Google Scholar 

  135. Chen Y, Rangasamy E, Liang C, An K (2015) Origin of high Li+ conduction in doped Li7La3Zr2O12 garnets. Chem Mater 27(16):5491–5494

    Google Scholar 

  136. Kawaura H, Harada M, Kondo Y, Kondo H, Suganuma Y, Takahashi N, Sugiyama J, Seno Y, Yamada NL (2016) Operando measurement of solid electrolyte interphase formation at working electrode of Li-ion battery by time-slicing neutron reflectometry. ACS Appl Mater Interfaces 8(15):9540–9544

    Google Scholar 

  137. Ma C, Cheng Y, Chen K, Li J, Sumpter BG, Nan CW, More KL, Dudney NJ, Chi M (2016) Mesoscopic framework enables facile ionic transport in solid electrolytes for Li batteries. Adv Energy Mater 6(11):1600053

    Google Scholar 

  138. Billinge SJ, Kanatzidis M (2004) Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. Chem Commun 7:749–760

    Google Scholar 

  139. Juhás P, Cherba D, Duxbury P, Punch W, Billinge S (2006) Ab initio determination of solid-state nanostructure. Nature 440(7084):655–658

    Google Scholar 

  140. Billinge SJ, Levin I (2007) The problem with determining atomic structure at the nanoscale. Science 316(5824):561–565

    Google Scholar 

  141. Maier J (1995) Ionic conduction in space charge regions. Prog Solid State Chem 23(3):171–263

    Google Scholar 

  142. Maier J (1985) Space charge regions in solid two-phase systems and their conduction contribution—I. Conductance enhancement in the system ionic conductor-‘inert’phase and application on AgCl: Al2O3 and AgC1: SiO2. J Phys Chem Solids 46(3):309–320

    Google Scholar 

  143. Liang C (1973) Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. J Electrochem Soc 120(10):1289–1292

    Google Scholar 

  144. Phipps JB, Johnson D, Whitmore D (1981) Effect of composition and imperfections on ion transport in lithium iodine. Solid State Ion 5:393–396

    Google Scholar 

  145. Phipps J, Whitmore D (1983) Interfacial conduction in lithium iodide containing inert oxides. J Power Sources 9(3):373–378

    Google Scholar 

  146. Takada K, Ohta N, Tateyama Y (2015) Recent progress in interfacial nanoarchitectonics in solid-state batteries. J Inorg Organomet Polym Mater 25(2):205–213

    Google Scholar 

  147. Ariga K, Li J, Fei J, Ji Q, Hill JP (2016) Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv Mater 28(6):1251–1286

    Google Scholar 

  148. Agrawal R, Gupta R (1999) Superionic solid: composite electrolyte phase—an overview. J Mater Sci 34(6):1131–1162. https://doi.org/10.1186/1471-2261-9-28

    Google Scholar 

  149. Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4(11):805–815

    Google Scholar 

  150. Maier J (1987) Defect chemistry and conductivity effects in heterogeneous solid electrolytes. J Electrochem Soc 134(6):1524–1535

    Google Scholar 

  151. Dudney NJ (1989) Composite electrolytes. Annu Rev Mater Sci 19(1):103–120

    Google Scholar 

  152. Dudney NJ (1988) Enhanced ionic conductivity in composite electrolytes. Solid State Ion 28:1065–1072

    Google Scholar 

  153. Kumar B, Scanlon LG (1994) Polymer-ceramic composite electrolytes. J Power Sources 52(2):261–268

    Google Scholar 

  154. Hood ZD, Wang H, Li Y, Pandian AS, Paranthaman MP, Liang C (2015) The “filler effect”: a study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes. Solid State Ion 283:75–80

    Google Scholar 

  155. Li Y, Xu B, Xu H, Duan H, Lü X, Xin S, Zhou W, Xue L, Fu G, Manthiram A (2017) Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem 129(3):771–774

    Google Scholar 

  156. Liu W, Liu N, Sun J, Hsu P-C, Li Y, Lee H-W, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745

    Google Scholar 

  157. Cao C, Li Z-B, Wang X-L, Zhao X-B, Han W-Q (2014) Recent advances in inorganic solid electrolytes for lithium batteries. Front Energy Res 2:25

    Google Scholar 

  158. Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB (2016) Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc 138(30):9385–9388

    Google Scholar 

  159. Kim S-H, Choi K-H, Cho S-J, Kil E-H, Lee S-Y (2013) Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries. J Mater Chem A 1(16):4949–4955

    Google Scholar 

  160. Fu KK, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C (2016) Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci 113(26):7094–7099

    Google Scholar 

  161. Baek S-W, Honma I, Kim J, Rangappa D (2017) Solidified inorganic–organic hybrid electrolyte for all solid state flexible lithium battery. J Power Sources 343:22–29

    Google Scholar 

  162. Tao X, Liu Y, Liu W, Zhou G, Zhao J, Lin D, Zu C, Sheng O, Zhang W, Lee H-W (2017) Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett 17(5):2967–2972

    Google Scholar 

  163. Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, Goodenough JB (2018) PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46:176–184

    Google Scholar 

  164. Li Y, Han J-T, Vogel SC, Wang C-A (2015) The reaction of Li6.5La3Zr1.5Ta0.5O12 with water. Solid State Ion 269:57–61

    Google Scholar 

  165. Cheng L, Crumlin EJ, Chen W, Qiao R, Hou H, Lux SF, Zorba V, Russo R, Kostecki R, Liu Z (2014) The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 16(34):18294–18300

    Google Scholar 

  166. Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y (2016) Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun 7:10992

    Google Scholar 

  167. Zhou W, Gao H, Goodenough JB (2016) Low-cost hollow mesoporous polymer spheres and all-solid-state lithium, sodium batteries. Adv Energy Mater 6(1):1501802

    Google Scholar 

  168. Zhao Y, Wu C, Peng G, Chen X, Yao X, Bai Y, Wu F, Chen S, Xu X (2016) A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J Power Sources 301:47–53

    Google Scholar 

  169. Henderson R (1990) Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction. Proc R Soc Lond B 241(1300):6–8

    Google Scholar 

  170. Egerton R, Crozier P, Rice P (1987) Electron energy-loss spectroscopy and chemical change. Ultramicroscopy 23(3–4):305–312

    Google Scholar 

  171. Egerton R, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35(6):399–409

    Google Scholar 

  172. Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C-L, Joubert L-M, Chin R, Koh AL, Yu Y (2017) Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358(6362):506–510

    Google Scholar 

  173. Wang X, Zhang M, Alvarado J, Wang S, Sina M, Lu B, Bouwer J, Xu W, Xiao J, Zhang J-G (2017) New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett 17(12):7606–7612

    Google Scholar 

  174. Zachman MJ, Tu Z, Choudhury S, Archer LA, Kourkoutis LF (2018) Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560(7718):345

    Google Scholar 

  175. Hood ZD, Wang H, Samuthira Pandian A, Keum JK, Liang C (2016) Li2OHCl crystalline electrolyte for stable metallic lithium anodes. J Am Chem Soc 138(6):1768–1771

    Google Scholar 

  176. Zhu Y, He X, Mo Y (2017) Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv Sci 4(8):1600517

    Google Scholar 

  177. Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396–A404

    Google Scholar 

  178. Samsonov GV (2012) Handbook of the physicochemical properties of the elements. Springer, NewYork

    Google Scholar 

  179. Sharafi A, Meyer HM, Nanda J, Wolfenstine J, Sakamoto J (2016) Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J Power Sources 302:135–139

    Google Scholar 

  180. Gibson A (1977) In: Collins DH (ed) Power sources, chap 6. Academic Press

  181. Viswanathan L, Virkar AV (1982) Wetting characteristics of sodium on β″-alumina and on nasicon. J Mater Sci 17(3):753–759. https://doi.org/10.1007/BF00551990

    Google Scholar 

  182. Taylor NJ, Stangeland-Molo S, Haslam CG, Sharafi A, Thompson T, Wang M, Garcia-Mendez R, Sakamoto J (2018) Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte. J Power Sources 396:314–318

    Google Scholar 

  183. Li J, Baggetto L, Martha SK, Veith GM, Nanda J, Liang C, Dudney NJ (2013) An artificial solid electrolyte interphase enables the use of a LiNi0.5Mn1.5O4 5V cathode with conventional electrolytes. Adv Energy Mater 3(10):1275–1278

    Google Scholar 

  184. Li J, Dudney NJ, Nanda J, Liang C (2014) Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl Mater Interfaces 6(13):10083–10088

    Google Scholar 

  185. Kozen AC, Pearse AJ, Lin C-F, Noked M, Rubloff GW (2015) Atomic layer deposition of the solid electrolyte LiPON. Chem Mater 27(15):5324–5331

    Google Scholar 

  186. Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M (2011) All-solid-state lithium secondary batteries using LiCoO2 particles with pulsed laser deposition coatings of Li2S–P2S5 solid electrolytes. J Power Sources 196(16):6735–6741

    Google Scholar 

  187. Ogawa M, Kanda R, Yoshida K, Uemura T, Harada K (2012) High-capacity thin film lithium batteries with sulfide solid electrolytes. J Power Sources 205:487–490

    Google Scholar 

  188. Han X, Gong Y, Fu KK, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G (2016) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 16(5):572

    Google Scholar 

  189. Wang C, Gong Y, Liu B, Fu KK, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W (2016) Conformal, nanoscale ZnO surface modification of garnet-based solid state electrolyte for lithium metal anodes. Nano Lett 17(1):565–571

    Google Scholar 

  190. Luo W, Lin CF, Zhao O, Noked M, Zhang Y, Rubloff GW, Hu L (2017) Ultrathin surface coating enables the stable sodium metal anode. Adv Energy Mater 7(2):1601526

    Google Scholar 

  191. Luo W, Gong Y, Zhu Y, Fu KK, Dai J, Lacey SD, Wang C, Liu B, Han X, Mo Y (2016) Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J Am Chem Soc 138(37):12258–12262

    Google Scholar 

  192. Kato A, Hayashi A, Tatsumisago M (2016) Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. J Power Sources 309:27–32

    Google Scholar 

  193. Kato A, Suyama M, Hotehama C, Kowada H, Sakuda A, Hayashi A, Tatsumisago M (2018) High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4 interfaces modified with Au thin films. J Electrochem Soc 165(9):A1950–A1954

    Google Scholar 

  194. Sahu G, Lin Z, Li J, Liu Z, Dudney N, Liang C (2014) Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ Sci 7(3):1053–1058

    Google Scholar 

  195. Maekawa H, Matsuo M, Takamura H, Ando M, Noda Y, Karahashi T, S-i O (2009) Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. J Am Chem Soc 131(3):894–895

    Google Scholar 

  196. Zhou W, Li Y, Xin S, Goodenough JB (2017) Rechargeable sodium all-solid-state battery. ACS Cent Sci 3(1):52–57

    Google Scholar 

  197. Han X, Liu Y, Jia Z, Chen Y-C, Wan J, Weadock N, Gaskell KJ, Li T, Hu L (2013) Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett 14(1):139–147

    Google Scholar 

  198. Jung SC, Kim H-J, Choi JW, Han Y-K (2014) Sodium ion diffusion in Al2O3: a distinct perspective compared with lithium ion diffusion. Nano Lett 14(11):6559–6563

    Google Scholar 

  199. Lotfabad EM, Kalisvaart P, Kohandehghan A, Cui K, Kupsta M, Farbod B, Mitlin D (2014) Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. J Mater Chem A 2(8):2504–2516

    Google Scholar 

  200. Kohandehghan A, Kalisvaart P, Cui K, Kupsta M, Memarzadeh E, Mitlin D (2013) Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance. J Mater Chem A 1(41):12850–12861

    Google Scholar 

  201. Fu KK, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey SD, Dai J (2017) Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv 3(4):e1601659

    Google Scholar 

  202. Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K, Pastel G, Lin CF, Mo Y (2017) Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater 29(22):1606042

    Google Scholar 

  203. Hachtel JA, Idrobo JC, Chi M (2018) Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope. Adv Struct Chem Imaging 4(1):10

    Google Scholar 

Download references

Acknowledgements

The preparation of this review was supported by the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility, and sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. ZDH gratefully acknowledges a Research Fellowship from the National Science Foundation under Grant No. DGE-1650044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaofang Chi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hood, Z.D., Chi, M. Mechanistic understanding and strategies to design interfaces of solid electrolytes: insights gained from transmission electron microscopy. J Mater Sci 54, 10571–10594 (2019). https://doi.org/10.1007/s10853-019-03633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03633-2

Navigation