Skip to main content
Log in

Mechanical properties of nanoporous gold subjected to tensile stresses in real-time, sub-microscopic scale

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ductile metals infiltrated with interconnected nanopores through selective dealloying gain useful properties but become macroscopically brittle due to flow localization. The mechanical behavior of nanoporous metals is dependent on a complex relationship between the deformation of the nanoporous foam structure and the deformation of the individual ligaments. Recent simulations and in situ experiments have revealed many insights into the deformation behavior of nanoporous metals, but it remains unclear how to engineer the structure to reduce flow localization. We perform transmission electron microscopy in situ tensile experiments on freestanding nanoporous gold films and observe the morphology evolution of both the interconnected structure and individual ligaments during deformation. Most ligaments fractured through plastic instability after large plastic elongation. We also observed several unexpected results such as instances of strain hardening and nanoscale brittle fracture in individual ligaments. Our observations suggest that highly curved ligaments and a wider distribution of ligament diameters could each contribute to ductility and fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Wittstock A, Wichmann A, Biener J, Bäumer M (2011) Nanoporous gold: a new gold catalyst with tunable properties. Faraday Discuss 152:87–98. https://doi.org/10.1039/c1fd00022e

    Article  CAS  Google Scholar 

  2. Ding Y, Chen M (2009) Nanoporous metals for catalytic and optical applications. MRS Bull 34:569–576. https://doi.org/10.1557/mrs2009.156

    Article  CAS  Google Scholar 

  3. Lang X, Arai S, Guan P, Ishikawa Y, Fujita T, Tanaka N, Chen M, Zhang L, Hirata A, Erlebacher J, Tokunaga T, McKenna K, Yamamoto Y, Yamamoto Y, Asao N (2012) Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 11:775–780. https://doi.org/10.1038/nmat3391

    Article  CAS  Google Scholar 

  4. Zhang X, Ding Y (2013) Unsupported nanoporous gold for heterogeneous catalysis. Catal Sci Technol 3:2862–2868. https://doi.org/10.1039/c3cy00241a

    Article  CAS  Google Scholar 

  5. Kramer D, Viswanath RN, Weissmüller J (2004) Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett 4:793–796. https://doi.org/10.1021/nl049927d

    Article  CAS  Google Scholar 

  6. Knoll W, Erlebacher J, Majoral J-P, Ahl S, Caminade A-M, Yu F (2006) Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes. Anal Chem 78:7346–7350. https://doi.org/10.1021/ac060829h

    Article  CAS  Google Scholar 

  7. Wittstock A, Biener J, Bäumer M (2010) Nanoporous gold: a new material for catalytic and sensor applications. Phys Chem Chem Phys 12:12919–12930. https://doi.org/10.1039/c0cp00757a

    Article  CAS  Google Scholar 

  8. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236. https://doi.org/10.1038/nnano.2011.13

    Article  CAS  Google Scholar 

  9. Xia R, Xu C, Wu W, Li X, Feng XQ, Ding Y (2009) Microtensile tests of mechanical properties of nanoporous Au thin films. J Mater Sci 44:4728–4733. https://doi.org/10.1007/s10853-009-3731-1

    Article  CAS  Google Scholar 

  10. Gwak EJ, Jeon H, Song E, Kang NR, Kim JY (2018) Twinned nanoporous gold with enhanced tensile strength. Acta Mater 155:253–261. https://doi.org/10.1016/j.actamat.2018.06.009

    Article  CAS  Google Scholar 

  11. Sun YE, Ye JIA, Minor AM, Balk TJ (2009) In situ indentation of nanoporous gold thin films in the transmission electron microscope. Microsc Res Tech 72:232–241. https://doi.org/10.1002/jemt.20676

    Article  CAS  Google Scholar 

  12. Gibson LJ, Ashby MF (1982) The mechanics of three-dimensional cellular materials. Proc R Soc Lond A Math Phys Sci 382:43–59. https://doi.org/10.1098/rspa.1982.0088

    Article  CAS  Google Scholar 

  13. Biener J, Hodge AM, Hamza AV, Hsiung LM, Satcher JH (2005) Nanoporous Au: a high yield strength material. J Appl Phys 97:2–5. https://doi.org/10.1063/1.1832742

    Article  CAS  Google Scholar 

  14. Hodge A, Hayes J, Caro J, Biener J, Hamza A (2006) Characterization and mechanical behavior of nanoporous gold. Adv Eng Mater 8:853–857. https://doi.org/10.1002/adem.200600079

    Article  CAS  Google Scholar 

  15. Jin HJ, Kurmanaeva L, Ro H, Ivanisenko Y, Schmauch J, Rösner H, Ivanisenko Y, Weissmüller J (2009) Deforming nanoporous metal : role of lattice coherency. Acta Mater C 57:2665–2672. https://doi.org/10.1016/j.actamat.2009.02.017

    Article  CAS  Google Scholar 

  16. Badwe N, Chen X, Sieradzki K (2017) Mechanical properties of nanoporous gold in tension. Acta Mater 129:251–258. https://doi.org/10.1016/j.actamat.2017.02.040

    Article  CAS  Google Scholar 

  17. Briot NJ, Kennerknecht T, Eberl C, Balk TJ (2014) Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing. Philos Mag 94:847–866. https://doi.org/10.1080/14786435.2013.868944

    Article  CAS  Google Scholar 

  18. Balk TJ, Eberl C, Sun Y, Hemker KJ, Gianola DS (2009) Tensile and compressive microspecimen testing of bulk nanoporous gold. JOM 61:26–31. https://doi.org/10.1007/s11837-009-0176-6

    Article  CAS  Google Scholar 

  19. Zheng H, Cao A, Weinberger CR, Huang JY, Du K, Wang J, Ma Y, Xia Y, Mao SX (2010) Discrete plasticity in sub-10-nm-sized gold crystals. Nat Commun 1:144–148. https://doi.org/10.1038/ncomms1149

    Article  CAS  Google Scholar 

  20. Dou R, Derby B (2011) Deformation mechanisms in gold nanowires and nanoporous gold. Philos Mag 91:1070–1083. https://doi.org/10.1080/14786435.2010.481271

    Article  CAS  Google Scholar 

  21. Sun XY, Xu GK, Li X, Feng XQ, Gao H (2013) Mechanical properties and scaling laws of nanoporous gold. J Appl Phys 113:023505. https://doi.org/10.1063/1.4774246

    Article  CAS  Google Scholar 

  22. Sun Y, Ye J, Shan Z, Minor AM, Balk TJ (2007) The mechanical behavior of nanoporous gold thin films. JOM J Miner Met Mater Soc 59:54–58. https://doi.org/10.1007/s11837-007-0118-0

    Article  CAS  Google Scholar 

  23. Lu Y, Song J, Huang JY, Lou J (2011) Fracture of Sub-20 nm ultrathin gold nanowires. Adv Funct Mater 21:3982–3989

    Article  CAS  Google Scholar 

  24. Jiao J, Huber N (2017) Deformation mechanisms in nanoporous metals: effect of ligament shape and disorder. Comput Mater Sci 127:194–203. https://doi.org/10.1016/j.commatsci.2016.10.035

    Article  CAS  Google Scholar 

  25. Hu K, Ziehmer M, Wang K, Lilleodden ET (2016) Nanoporous gold: 3D structural analyses of representative volumes and their implications on scaling relations of mechanical behaviour. Philos Mag 96:3322–3335. https://doi.org/10.1080/14786435.2016.1222087

    Article  CAS  Google Scholar 

  26. Afanasyev K, Sansoz F, Afanasyev SF, Konstantin A (2007) Strengthening in gold-nanopillars with nanoscale twins. Nano Lett 7:2056–2062. https://doi.org/10.1021/nl070959l

    Article  CAS  Google Scholar 

  27. Sun S, Chen X, Badwe N, Sieradzki K (2015) Potential-dependent dynamic fracture of nanoporous gold. Nat Mater 14:1–6. https://doi.org/10.1038/nmat4335

    Article  CAS  Google Scholar 

  28. Liu P, Wei X, Song S, Wang L, Hirata A, Fujita T, Han X, Zhang Z, Chen M (2019) Time-resolved atomic-scale observations of deformation and fracture of nanoporous gold under tension. Acta Mater 165:99–108

    Article  CAS  Google Scholar 

  29. Li R, Sieradzki K (1992) Ductile-brittle transition in random porous Au. Phys Rev Lett 68:1168–1171. https://doi.org/10.1103/PhysRevLett.68.1168

    Article  CAS  Google Scholar 

  30. Sato K, Miyazaki H, Gondo T, Miyazaki S, Murayama M, Hata S (2016) Development of a novel straining holder for TEM compatible with electron tomography. In: 2016 Proceedings of European microscopy congress, Wiley, Hoboken, pp 287–288

  31. Stuckner J, Frei K, McCue I, Demkowicz MJ, Murayama M (2017) AQUAMI: an open source python package and GUI for the automatic quantitative analysis of morphologically complex multiphase materials. Comput Mater Sci 139:320–329. https://doi.org/10.1016/j.commatsci.2017.08.012

    Article  CAS  Google Scholar 

  32. Farkas D, Caro A, Bringa E, Crowson D (2013) Mechanical response of nanoporous gold. Acta Mater 61:3249–3256. https://doi.org/10.1016/j.actamat.2013.02.013

    Article  CAS  Google Scholar 

  33. Crowson DA, Farkas D, Corcoran SG (2009) Mechanical stability of nanoporous metals with small ligament sizes. Scr Mater 61:497–499. https://doi.org/10.1016/j.scriptamat.2009.05.005

    Article  CAS  Google Scholar 

  34. Warner DH, Curtin WA, Qu S (2007) Rate dependence of crack-tip processes predicts twinning trends in fcc metals. Nat Mater 6:876

    Article  CAS  Google Scholar 

  35. Stuckner J, Frei K, Corcoran SG, Reynolds WT, Murayama M (under review) Assessing the influence of processing parameters and external loading on the nanoporous structure and morphology of nanoporous gold toward catalytic applications

  36. Briot NJ, Balk TJ (2018) Focused ion beam characterization of deformation resulting from nanoindentation of nanoporous gold. MRS Commun 8:132–136. https://doi.org/10.1557/mrc.2017.138

    Article  CAS  Google Scholar 

  37. Farkas D, Stuckner J, Umbel R, Kuhr B, Demkowicz MJ (2018) Indentation response of nanoporous gold from atomistic simulations. J Mater Res 33:1382–1390. https://doi.org/10.1557/jmr.2018.72

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the NSF DMREF program under Grant Nos. #1623051 and #1533969. We acknowledge DOE BES Geosciences (DE-FG02-06ER15786) for developing the in situ TEM capability. Facilities were made available through Virginia Tech’s Institute for Critical Technology and Applied Science Nanoscale Characterization and Fabrication Laboratory (ICTAS-NCFL). We acknowledge Dr. Diana Farkas, Dr. William Reynolds, and Dr. Sean Corcoran for their expertise and insightful conversations. We also acknowledge the Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth), a member of the National Nanotechnology Coordinated Infrastructure (NNCI), supported by NSF (ECCS 1542100) for providing technical consultation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Stuckner.

Ethics declarations

Conflict of interest

The authors are unaware of any conflicts of interest regarding the data and findings presented in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuckner, J., Murayama, M. Mechanical properties of nanoporous gold subjected to tensile stresses in real-time, sub-microscopic scale. J Mater Sci 54, 12106–12115 (2019). https://doi.org/10.1007/s10853-019-03762-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03762-8

Navigation