Skip to main content
Log in

Cerium in aluminum alloys

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rare-earth metals create unique opportunities in improving properties of aluminum alloys. For over a century, there have been attempts to explore cerium for aluminum alloying, emphasizing advantages it exhibits among rare earths. This review covers laboratory and industrial efforts of applying cerium for a purpose of developing aluminum alloys with superior properties. The binary Al–Ce, ternary Al–Ce–X and higher-order phase systems are reviewed with a focus on the aluminum-rich sections. The role of cerium in forming stable, high-melting-point compounds, improving strength and thermal stability is analyzed along with its function as a grain refiner in the aluminum melt, the eutectic modifier, as de-gasifying and de-slagging agent through its reaction with gas and liquid impurities. In addition to conventional alloys with cerium as a minor and major ingredient also amorphous alloys along with aluminum matrix nanocomposites, exploring cerium oxide as reinforcement, are assessed. The role of cerium in bulk alloying is expanded to surface engineering solutions enhancing aluminum wear and corrosion resistance. Efforts of cerium recovery from parts after end of service life and alloy design for a recycling friendly world are discussed to minimize losses and prevent contamination of material supply chain in modern manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35

Similar content being viewed by others

Notes

  1. All alloy compositions are in wt% unless specified otherwise.

References

  1. Hall C (1889) Process of reducing aluminum by electrolysis. US Patent 400766

  2. Davis J (ed) (1993) Aluminum and aluminum alloys. ASM International, Materials Park

    Google Scholar 

  3. Aluminum alloys market from construction applications to cross $35 Bn by 2024. Markets Insider, 6-03-2018. http://markets.businessinsider.com. Accessed 17 July 2018

  4. Barbara B, Bècle C, Lemaire R, Pauthenet R (1968) Magnetic properties of some rare earth-aluminum alloys. J Appl Phys 39:1084

    Article  CAS  Google Scholar 

  5. Oesterreicher H (1974) Constitution of aluminum base rare earth alloys RT2-RA12 (R = Pr, Gd, Er; T = Mn, Fe Co, Ni, Cu). Inorg Chem 13(12):2807–2811

    Article  CAS  Google Scholar 

  6. Umarova T (2017) “Influence of microalloying (including rare-earth metals) on the phase composition and properties of aluminum alloys. Mater Sci Forum 890:331–338

    Article  Google Scholar 

  7. Nie Z, Fu J, Zou J, Jin T, Yang J, Xu G, Ruan H, Zuo T (2004) Advanced aluminum alloys containing rare-earth erbium. In: Nie JF, Morton AJ, Muddle BC (eds) Materials forum, vol 28. Institute of Materials Engineering Australasia Ltd, Melbourne

    Google Scholar 

  8. Matveeva I, Dovzhenko N, Sidelnikov S (2013) Development and research of new aluminium alloys with transition and rare-earth metals and equipment for production of wire for electrotechnical applications by methods of combined processing. In: Proceedings of the Symposia «Light Metals 2013», Wiley, New Jersey, pp 443–447

  9. Rosalbino F, Angelini E, De Negri S, Saccone A, Delfino S (2003) Influence of the rare earth content on the electrochemical behaviour of Al–Mg–Er alloys. Intermetallics 11(5):435–441

    Article  CAS  Google Scholar 

  10. Alkahtani S, Elgallad E, Tash M, Samuel A, Samuel F (2016) Effect of rare earth metals on the microstructure of Al–Si based alloys. Materials 9(45):1–13

    Google Scholar 

  11. Hu Z, Yan H, Rao Y (2013) Effects of samarium addition on microstructure and mechanical properties of as-cast Al–Si–Cu allo. Trans Nonferr Met Soc China 23:3228–3234

    Article  CAS  Google Scholar 

  12. Yi H, Zhang D, Sakata T, Mori H (2003) Microstructures and La-rich compounds in a Cu-containing hypereutectic Al–Si alloy. J Alloys Compd 354:159–164

    Article  CAS  Google Scholar 

  13. Nogita K, McDonalds SD, Dahle AK (2004) Eutectic modification of Al–Si alloys with rare earth metals. Mater Trans 45(2):323–326

    Article  CAS  Google Scholar 

  14. Li Y, Liu Z, Zhou J, Xia Q (2007) Microstructure and mechanical properties of Al–Cu–Mg–Ag alloyed with Ce. Trans Nonferr Met Soc China 17:s266–s270

    CAS  Google Scholar 

  15. Voncken J (2016) The rare earth elements. Springer, Cham

    Book  Google Scholar 

  16. Gupta C, Krishnamurthy N (2005) Extractive metallurgy of rare earths. CRC Press, Boca Raton

    Google Scholar 

  17. Evans C (1996) Episodes from the history of the rare earth elements, Dordrecht, Boston. Kluwer, London

    Book  Google Scholar 

  18. Connelly N, Hartshorn R, Damhus T, Hutton A (2005) Nomenclature of inorganic chemistry: IUPAC recommendations 2005. International Union of Pure and Applied Chemistry, RSC Publishing, Norfolk, p 51

    Google Scholar 

  19. Gupta C, Krishnamurthy N (2013) Extractive metallurgy of rare earths. Int Mater Rev 37(1):197–248

    Article  Google Scholar 

  20. Zhou B, Li Z, Chen C (2017) Global potential of rare earth resources and rare earth demand from clean technologies. Minerals 7(11):203

    Article  CAS  Google Scholar 

  21. Rudnick R, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) Treatise on geochemistry, vol 3. Elsevier Pergamon, Oxford, pp 1–7

    Google Scholar 

  22. Haynes W (ed) (2014) CRC handbook of chemistry and physics. CRC Press/Taylor and Francis, Boca Raton

    Google Scholar 

  23. Habashi F (2013) Extractive metallurgy of rare earths. Can Metall Q 52(3):224–233

    Article  CAS  Google Scholar 

  24. Metall—The Rare Earth Company. http://www.metall.com.cn/cemm.htm. Accessed 22 June 2018

  25. Daltung S (2016) Innovation-critical metals & minerals from extraction to final product—how can the state support their development? Ref. no.: 2016/227. Swedish Agency for Growth Policy Analysis, Östersund

    Google Scholar 

  26. Ayres R, Talens Peiró L (2013) Material efficiency: rare and critical metals. Philos Trans R Soc A 371:20110563

    Article  Google Scholar 

  27. Marshall J (2014) Why rare earth recycling is rare—and what we can do about it. ENSIA, 7-4-2014. https://ensia.com/features/rare-earth-recycling/. Accessed 29 June 2018

  28. Takeda O, Okabe T (2014) Current status on resource and recycling technology for rare earths. Metall Mater Trans E 1(2):160–173

    CAS  Google Scholar 

  29. Binnemans K, Jones P, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22

    Article  CAS  Google Scholar 

  30. Curtis N (2010) Rare earths, we can touch them everyday. In: Lynas Presentation at the JP Morgan Australia Corporate Access Days, 27–28 September, New York

  31. Goonan T (2011) Rare earth elements—end use and recyclability, scientific investigations report 2011–5094. U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia

  32. Elder J, Cowie J, Weritz J (2017) The importance of aluminum alloying elements and their sources. Light Met. Age, p 20

  33. Koskenmaki DC, Gschneidner KA (1978) Cerium. In: Gschneidner KA, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 1. North-Holland, Amsterdam

    Google Scholar 

  34. Johansson B, Luo W, Ahuja R (2014) Cerium; crystal structure and position in the periodic table. Sci Rep 4:6398

    Article  CAS  Google Scholar 

  35. Younis A, Chu D, Li S (2016) Cerium oxide nanostructures and their applications. In: Functionalized Nanomaterials Muhammad Akhyar Farrukh, IntechOpen

  36. Prim OA, Marino T, Corma A, Molinari R, García H (2011) Efficient visible-light photocatalytic water spliting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. J Am Chem Soc 133:6930–6933

    Article  CAS  Google Scholar 

  37. Marina O, Mogensen M (1999) High-temperature conversion of methane on a composite. Appl Catal A 189:117–126

    Article  CAS  Google Scholar 

  38. Gorte R, Vohs J (2009) Nanostructured anodes for solid oxide fuel cells. Curr Opin Colloid Interface Sci 14:236–244

    Article  CAS  Google Scholar 

  39. Czerwinski F, Smeltzer W (1993) The early-stage oxidation kinetics of CeO2 sol-coated nickel. J Electrochem Soc 140:2606–2615

    Article  CAS  Google Scholar 

  40. Czerwinski F, Szpunar J, Smeltzer W (1996) Steady-stage growth of NiO scales on ceria-coated polycrystalline nickel. J Electrochem Soc 143(9):3000–3007

    Article  Google Scholar 

  41. Czerwinski F, Szpunar J (1997) The nanocrystalline ceria sol–gel coatings for high temperature applications. J Sol-Gel Sci Technol 9:103–114

    CAS  Google Scholar 

  42. Czerwinski F (2015) The reactive element effect on high temperature oxidation of magnesium. Int Mater Rev 50:264–296

    Article  CAS  Google Scholar 

  43. Czerwinski F (2014) Controlling ignition and flammability of magnesium for aerospace applications. Corros Sci 86:1–16

    Article  CAS  Google Scholar 

  44. Czerwinski F, Sproule G, Graham M, Smeltzer W (1995) 18O—SIMS study of oxide growth on nickel modified with Ce implants and CeO2 coatings. Corros Sci 37:541–556

    Article  CAS  Google Scholar 

  45. Czerwinski F, Szpunar J, Smeltzer W (1996) The growth and structure of thin oxide films on cerium ion-implanted nickel. Metall Mater Trans A 27:3649–3661

    Article  Google Scholar 

  46. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116(10):5987–6041

    Article  CAS  Google Scholar 

  47. Xu C, Qu X (2014) Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater 6:e90

    Article  CAS  Google Scholar 

  48. Belov N, Aksenov A, Eskin D (2002) Iron in aluminum alloys: impurity and alloying element. Taylor & Francis, London

    Google Scholar 

  49. Belov N, Khvan A (2007) The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner. Acta Mater 55(16):5473–5482

    Article  CAS  Google Scholar 

  50. Zolotorevsky V, Belov N, Glasoff M (2007) Casting aluminum alloys. Elsevier, Pittsburgh

    Book  Google Scholar 

  51. Belov N, Naumova E, Eskin D (1999) Casting alloys of the Al–Ce–Ni system: microstructural approach to alloy design. Mater Sci Eng, A 271(1–2):134–142

    Article  Google Scholar 

  52. Gambogi J (2018) 2015 Minerals yearbook, rare earths. U.S. Geological Survey, p 60.13

  53. Chegwidden J, Kingsnorth D (2010) Rare earths: facing the uncertainties of supply. In: 6th international rare earths conference, Hong Kong

  54. Sims Z, Weiss D, McCall S, McGuire M, Ott R, Geer T, Rios O, Turchi P (2016) Cerium-based, intermetallic-strengthened aluminum casting alloy: high-volume co-product development. JOM 68(7):1940–1947

    Article  CAS  Google Scholar 

  55. The Rare Earth Industry in Canada—Summary of Evidence. Standing Committee on Natural Resources, 41st Parliament, Second Session, Ottawa (2014)

  56. Gschneidner K, Verkande M (1975) Selected cerium phase diagrams. Rare Earth Information Center, Iowa State University, Ames

    Google Scholar 

  57. Van Vucht J (1957) Contribution to the knowledge of the system cerium–aluminum. Z Metallkd 48:252–258

    Google Scholar 

  58. Drits M, Kadaner E, Shoa N (1969) Solid solubility of rare earth metals in aluminum. Izv Akad Nauk SSSR Met 1:219–223

    Google Scholar 

  59. Buschow K, Van Vucht J (1966) The binary systems cerium–aluminum and praseodymium-aluminum. Z Metallkd 57:162–166

    CAS  Google Scholar 

  60. Gschneidner K, Calderwood F (1988) The Al–Ce (aluminum–cerium) system. Bull Alloy Phase Diagr 9(6):669–672

    Article  Google Scholar 

  61. Saccone A, Cardinale A, Delfino S, Ferro R (1996) Phase equilibria in the rare earth metals(R)-rich regions of the R-Al systems(R = La, Ce, Pr, Nd). Z Metallkd 87:82–87

    CAS  Google Scholar 

  62. Okamoto H (1998) Al–Ce (Aluminum–Cerium). J Phase Equilib 19:396

    Article  CAS  Google Scholar 

  63. Gao M, Unlu N, Shiflet G, Mihalcovic M (2005) Reassessment of Al–Ce and Al–Nd binary systems supported by critical experiments and first-principles energy calculations. Metall Mater Trans A 36:3269–3279

    Article  Google Scholar 

  64. Gao M, Rollett A, Widom M (2007) Lattice stability of aluminum-rare earth binary systems: a first-principles approach. Phys Rev B 75:175120

    Google Scholar 

  65. Okamoto H (2011) Al–Ce (Aluminum–Cerium). J Phase Equilib Diffus 32(4):392–393

    Article  CAS  Google Scholar 

  66. Gschneidner K (1961) Rare earth alloys. Van Nostrand, Princeton

    Google Scholar 

  67. Gomes de Mesquita A, Buschow K (1967) The crystal structure of so-called alpha-LaAl4 (La3Al11). Acta Crystallogr 22:497–501

    Article  CAS  Google Scholar 

  68. Buschow K, Van Vucht J (1967) Systematic arrangement of the binary rare-earth-aluminium systems. Philips Res Rep 22:233–245

    CAS  Google Scholar 

  69. Cao Z, Kong G, Che C, Wang Y, Peng H (2017) Experimental investigation of eutectic point in Al-rich Al–La, Al–Ce, Al–Pr and Al–Nd systems. J Rare Earths 35(10):1022–1028

    Article  CAS  Google Scholar 

  70. Mondolfo L (1976) Aluminum alloys—structure and properties. Butterworth, Boston

    Google Scholar 

  71. Boroujeni M, Najafabadi R, Badalovich B, Pulatov P, Badalovich AB (2012) Structure and properties of aluminum alloys with cerium, praseodymium and neodymium. Orient J Chem 28(4):1625–1629

    Article  CAS  Google Scholar 

  72. Razizi M, Amini R, Eshov B, Badalov A (2012) Preparation of physical and chemical and thermodynamic properties of aluminum alloys with cerium. Mater Sci Res India 9(1):01–07

    Article  Google Scholar 

  73. Ding W, Yi J, Chen P, Li D, Peng L, Tang Y (2012) Elastic properties and electronic structures of typical Al–Ce structures from first-principles calculations. Solid State Sci 14(5):555–561

    Article  CAS  Google Scholar 

  74. Mao Z, Seidman D, Wolverton C (2011) First-principles phase stability, magnetic properties and solubility in aluminum–rare-earth (Al–RE) alloys and compounds. Acta Mater 59(9):3659–3666

    Article  CAS  Google Scholar 

  75. Olsen J, Gerward L, Benedict U, Itie J (1985) The crystal structure and the equation of state of cerium metal in the pressure range 0–46 GPa. Physica B+C 133(2–3):129–137

    Article  CAS  Google Scholar 

  76. Kang Y, Pelton A, Chartrand P, Fuerst C (2008) Critical evaluation and thermodynamic optimization of the Al–Ce, Al–Y, Al–Sc and Mg–Sc binary systems. Calphad 32(2):413

    Article  CAS  Google Scholar 

  77. Barin I (1989) Thermochemical data of pure substances. VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  78. Hyland R (1992) Homogeneous nucleation kinetics of Al3Sc in a dilute Al–Sc alloy. Metall Trans A 23(7):1947–1955

    Article  Google Scholar 

  79. Zhang F (1982) Rare Earths 3:58

    Google Scholar 

  80. Cai W (1997) Diffusion of cerium in the aluminium lattice. J Mater Sci Lett 16(22):1824–1826

    Article  CAS  Google Scholar 

  81. Effenberg G, Ilyenko S (eds) (2004) Al–Ce–Cu (aluminium–cerium–copper). In: Light metal systems. Part 1. Landolt-Börnstein—Group IV Physical Chemistry. Springer, Berlin, Heidelberg, pp 181–185

  82. Gladyshevsky E, Kolobnev I, Zarechnyuk O (1961) Aluminium-rich alloys in the Al–Ce–Cu system. Russ J Inorg Chem 6:1075–1078

    Google Scholar 

  83. Zarechnyuk O, Kripyakevich P, Gladyshevskij E (1965) Ternary intermetallic compounds with a BaAl4 type superlattice. Sov Phys Crystallogr 9:706–708

    Google Scholar 

  84. Yunusov I, Ganiev IN, Shishkin EA (1991) Aluminum–copper–cerium phase diagram in the aluminum-rich corner. Izv Akad Nauk SSSR Met 3:200–203

    Google Scholar 

  85. Hanaman F (1915) On cerium alloys. Int Z Metallogr 7:174–224

    CAS  Google Scholar 

  86. Duisemailiev UK, Presnyakov AA (1964) Solubility of cerium in copper and physico-mechanical properties of copper-cerium alloys. Zhur Neorg Khim 9:2258–2260

    Google Scholar 

  87. Bo H, Jin S, Zhang G, Chen X, Liu L, Zheng F, Jin Z (2009) Thermodynamic assessment of Al–Ce–Cu system. J Alloys Compd 484(1–2):286–295

    Article  CAS  Google Scholar 

  88. Raghavan V (2007) Al–Ce–Mg (Aluminum-Cerium-Magnesium). J Phase Equilib Diffus 28(5):453–455

    Article  CAS  Google Scholar 

  89. Grobner J, Kevorkov D, Schmid-Fetzer R (2002) Thermodynamic modeling of Al–Ce–Mg phase equilibria coupled with key experiments. Intermetallics 10(5):415–422

    Article  CAS  Google Scholar 

  90. Zarechnyuk O, Kripyakevich P (1967) X-ray Structural Investigation of the Ce–Mg–Al System in the Range 0–33.3 at.% Ce. Russ Metall 4:101–103

    Google Scholar 

  91. Cui Z, Wu R (1984) Phase diagram and properties of ternary Al–Mg–Ce alloys. Acta Metall Sin 20(6):323–331

    Google Scholar 

  92. Jin L, Kevorkov D, Medraj M, Chartrand P (2013) Al–Mg–RE (RE = La, Ce, Pr, Nd, Sm) systems: thermodynamic evaluations and optimizations coupled with key experiments and Miedema’s model estimations. J Chem Thermodyn 58:166–195

    Article  CAS  Google Scholar 

  93. Lu Z, Li X, Zhang L (2018) Thermodynamic description of Al–Si–Mg–Ce quaternary system in Al-Rich corner and its experimental validation. J Phase Equilib Diffus 39:57–67

    Article  CAS  Google Scholar 

  94. Odinaev K, Ganiev I, Kinzhibalo V, Kurbanov K (1989) Phase equilibria in the Al–Mg–Y and Al–Mg–Ce systems at 673 K. Izv Vyssh Uchebn Zaved Tsvetn Metall 7:75–77

    Google Scholar 

  95. Odinaev K, Ganiev I, Ikromov A (1996) Pseudobinary sections and liquidus surface of the Al–Mg–CeAl2 system. Russ Metall 3:122–125

    Google Scholar 

  96. Lu Z, Zhang L (2017) Thermal stability and crystal structure of high-temperature compound Al13CeMg6. Intermetallics 88(9):73–76

    Article  CAS  Google Scholar 

  97. Altunina L, Gladyshevsky E, Zarechnyuk O, Kolobnev I (1963) Physico-Chemical Properties of Al–Si–Ce with 0 to73 wt% Ce. Zh Neorg Khim 8:870–873

    Google Scholar 

  98. Muraveva A, Zarechnyuk O, Gladyshevskij E (1972) Compounds with the La2O2S-Type in the systems: rare earth metal-aluminium-silicon. Visn Lviv Derz Univ Ser Khim 13:14–16

    Google Scholar 

  99. Muraveva A (1972) Phase equilibria and crystal structure of compounds in ternary systems of aluminium and silicon (germanium) with rare earth metals. Autorreferat Dis. Kand. Khim. Abstract of Thesis, Nauk, Lvov, pp 1–18

  100. Flandorfer H, Kaczorowski D, Grobner J, Rogl P, Wouters R, Godart C, Kostikas A (1998) The systems Ce-Al-(Si, Ge): phase equilibria and physical properties. J Solid State Chem 137(2):191–205

    Article  CAS  Google Scholar 

  101. Murray J, McAlister A (1984) The Al–Si (aluminum–silicon) system. Bull Alloy Phase Diagr 5(1):74–84

    Article  CAS  Google Scholar 

  102. Bulanova M, Zhelto P, Meleshevich K, Saltykov P, Effenberg G (2002) Cerium–silicon system. J Alloys Compd 345(1):110–115

    Article  CAS  Google Scholar 

  103. Benesovsky F, Nowotny H, Pifger W, Rassaerts H (1966) Investigation of the ternary system cerium-thorium-silicon. Monatsh Chem 97:221–229

    Article  CAS  Google Scholar 

  104. Meschel S, Kleppa O (1995) Standard enthalpies of formation of some carbides, silicides and germanides of cerium and praseodymium. J Alloys Compd 220(1–2):88–93

    Article  CAS  Google Scholar 

  105. Grobner J, Mirkovic D, Schmid-Fetzer R (2004) Thermodynamic aspects of the constitution, grain refining, and solidification enthalpies of Al–Ce–Si alloys. Metall Mater Trans A 35:3349–3362

    Article  Google Scholar 

  106. Raghavan V (2007) Al–Ce–Si (aluminum–cerium–silicon). J Phase Equilib Diffus 28(5):456–458

    Article  CAS  Google Scholar 

  107. Li Y, Liu Y, Wang X, Zhao M, Yin F (2014) Isothermal section of Al–Si–Ce ternary system at 1073K. J Phase Equilib Diffus 35:276–283

    Article  CAS  Google Scholar 

  108. Villars P, Prince A, Okamoto H (1995) Handbook of ternary alloy phase diagrams, vol 3. ASM International, Materials Park

    Google Scholar 

  109. Zarechnyuk O, Yanson T, Ryhal R. Ce–Ni–Al System. Izv AN SSSR Met 4:192, 183

  110. Xiong W, Du Y, Lu X, Schuster J, Chen H (2007) Reassessment of the Ce–Ni binary system supported by key experiments and ab initio calculations. Intermetallics 15(11):1401–1408

    Article  CAS  Google Scholar 

  111. Okamoto H (2009) Ce–Ni (cerium–nickel). J Phase Equilib Diffus 30(4):407

    Article  CAS  Google Scholar 

  112. Raghavan V (2009) Al–Ce–Ni (aluminum–cerium–nickel). J Phase Equilib Diffus 30(3):265–267

    Article  CAS  Google Scholar 

  113. Glazoff M, Khvan A, Zolotorevsky V, Belov N, Dinsdale A (2018) Casting aluminum alloys: their physical and mechanical metallurgy. Butterworth-Heinemann, Oxford

    Google Scholar 

  114. Tang C, Du Y, Zhou H (2009) The phase equilibria of the Al–Ce–Ni system at 500 & #xB0;C. J Alloys Compd 470(1–2):222–227

    Article  CAS  Google Scholar 

  115. Sun S, Yi D, Liu H, Zang B, Jiang Y (2010) Calculation of glass forming ranges in Al–Ni–RE (Ce, La, Y) ternary alloys and their sub-binaries based on Miedema’s model. J Alloys Compd 506(1):377–387

    Article  CAS  Google Scholar 

  116. Rios C, Surinach S, Baro M, Bolfarini C, Botta W, Kiminami C (2008) Glass forming ability of the Al–Ce–Ni system. J Non-Cryst Solids 354(42–44):4874–4877

    Article  CAS  Google Scholar 

  117. Meissner K (1925) Some examples of the practical use of the clear-cross method. Metall und Erz. 22:243–247

    CAS  Google Scholar 

  118. Zarechnyuk O, Myskiv M, Ryabov V (1969) X-Ray diffraction study of the phase composition of Ce–Fe–Al alloys containing up to 33.3 at% Ce. Izv Akad Nauk SSSR Met 2:164–166

    Google Scholar 

  119. Gladyshevsky E, Zarechnyuk O, Teslyuk M, Zarechnyuk O, Kuzma Y (1961) Crystal structures of some intermetallic compounds. Kristallografiya 6:267–268

    Google Scholar 

  120. Yarmolyul Y, Rykhal R, Zarechnyuk O (1974) Crystal Structure of CeFe2Al8 and LaCoAl4. Tezisy Dokl. Vses. Konf. Kristallokhim. in Intermetalicheskie Soedineniya 2:39–40

  121. Franceschini D, Da Cunha S (1985) Magnetic properties of Ce(Fe1-xAlx)2 for x ≤ 0.20. J Magn Magn Mater 51:280–290

    Article  CAS  Google Scholar 

  122. Okamoto H (2008) Ce–Fe (cerium–iron). J Phase Equilib Diffus 29(1):116–117

    Article  CAS  Google Scholar 

  123. Marazza R, Riani P, Cacciamani G (2008) Critical assessment of iron binary systems with light rare earths La, Ce, Pr, and Nd. Inorg Chim Acta 361(14–15):3800–3806

    Article  CAS  Google Scholar 

  124. Effenberg G, Ilyenko S (2004) Al–Ce–Fe (aluminum-cerium-iron). In: Light metal systems part 1. Springer, Berlin, p 11A1

  125. Orimoloye K, Kevorkov D, Medraj M (2018) Phase equilibria and magnetic phases in the Fe-rich regions of the Ce–Fe–{Ni, Si, Al}-B quaternary systems. J Alloys Compd 763:289–295

    Article  CAS  Google Scholar 

  126. Zheng H, Li Z, Ji L, Yin F (2017) Investigation of the 600 & #xB0;C isothermal section of the Fe–Al–Ce ternary system. Int J Mater Res 108(1):36–44

    Article  CAS  Google Scholar 

  127. Zarechnyuk O, Rykhal Z, Korin V (1980) Dopo Akad Nauk Ukr A Fiziko-Mater Tekh Nauki 42:84–85

  128. Gao M, Unlu N, Shiflet G, Mihalkovic M, Widom M (2007) Glass formation, phase equilibria, and thermodynamic assessment of the Al–Ce–Co system assisted by first-principles energy calculations. Metall Mater Trans A 38:2540–2551

    Article  CAS  Google Scholar 

  129. Yu X, Yin D, Yu Z, Zhang Y, Li S (2016) Microstructure evolution of novel Al–Cu–Li–Ce alloys during homogenization. Rare Met Mater Eng 45(7):1687–1693

    Article  Google Scholar 

  130. Yu X, Yu Z, Yin D, Zhang Y (2016) Effects of cerium on solidification behavior and intermetallic structure of novel Al–Cu–Li alloys. Rare Met Mater Eng 45(6):1423–1429

    Article  Google Scholar 

  131. Chen Z, Chen P, Li S (2012) Effect of Ce addition on microstructure of Al20Cu2Mn3 twin phase in an Al–Cu–Mn casting alloy. Mater Sci Eng A 532:606–609

    Article  CAS  Google Scholar 

  132. Ji L, Li Z, Wu Y, Liu Y, Zhao MYF (2015) The phase equilibria of the 75 at.% Al–Zn–Ce–Fe quaternary system at 600 degrees C. J Phase Equilib Diffus 36(2):92–98

    Article  CAS  Google Scholar 

  133. Luo Q, Chen J, Li Y, Chou K (2012) Experimental study and thermodynamic assessment of the Al–Fe rich side of the Al–Zn–Fe system at 300 and 550 & #xB0; C. Calphad 37:116–125

    Article  CAS  Google Scholar 

  134. Ikromov A, Ganiev I, Vakhobov A, Kinzhibalo V (1991) Phase equilibria in the Al–Zn–Ce system at 593K. Russ Metall 2:219–221

    Google Scholar 

  135. Czerwinski F, Kasprzak W, Sediako D, Emadi D, Shaha S, Friedman J, Chen D (2016) High-temperature aluminum alloys for automotive powertrains. Adv Mater Process 174(3):16–20

    Google Scholar 

  136. Czerwinski F, Shaha S, Kasprzak W, Friedman J, Chen D (2018) Effect of transition metals on thermal stability of Al–Si cast alloys. In: Frontiers in materials processing, applications, research and technology. Springer, Singapore, pp 287–296

  137. Shaha S, Czerwinski F, Kasprzak W, Friedman J, Chen D (2015) Improving high-temperature tensile strength and low-cycle fatigue behaviour of Al–Si–Cu–Mg alloys through micro-additions of Ti, V, and Zr. Metall Mater Trans A 46:363–378

    Article  CAS  Google Scholar 

  138. Shaha S, Czerwinski F, Kasprzak W, Friedman J, Chen D (2016) Effect of Cr, Ti, V, and Zr micro-additions on microstructure and mechanical properties of the Al–Si–Cu–Mg cast alloy. Metall Mater Trans A 47(5):2396–2409

    Article  CAS  Google Scholar 

  139. Shaha S, Czerwinski F, Kasprzak W, Friedman J, Chen D (2016) Ageing characteristics and high-temperature tensile properties of Al–Si–Cu–Mg alloys with micro-additions of Cr, Ti, V and Z. Mater Sci Eng A 652:353–364

    Article  CAS  Google Scholar 

  140. Shaha S, Czerwinski F, Kasprzak W, Friedman J, Chen D (2017) Ageing characteristics and high-temperature tensile properties of Al–Si–Cu–Mg alloys with micro-additions of Mo and Mn. Mater Sci Eng A 684:726–736

    Article  CAS  Google Scholar 

  141. Rogal L, Dutkiewicz J, Atkinson H, Litynska-Dobrzynska L, Czeppe T, Modigell M (2013) Characterization of semi-solid processing of aluminium alloy 7075 with Sc and Zr additions. Mater Sci Eng A 580:362–373

    Article  CAS  Google Scholar 

  142. Royset J, Ryum N (2005) Scandium in aluminum alloys. Inter Mater Rev 50(1):19–44

    Article  CAS  Google Scholar 

  143. Booth-Morrison C, Dunand D, Seidman D (2011) Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater 59:7029–7042

    Article  CAS  Google Scholar 

  144. Wang Q, Li Z, Pang S, Li X, Dong C, Liaw P (2018) Coherent precipitation and strengthening in compositionally complex alloys: a review. Entropy 20(11):878

    Article  CAS  Google Scholar 

  145. Elagin V, Zakharov V, Rostova T (1992) Scandium-alloyed aluminum alloys. Met Sci Heat Treat 34(1):37–45

    Article  Google Scholar 

  146. Dorin T, Ramajayam M, Vahid A, Langan T (2018) Chapter 12—Aluminium scandium alloys. In: Fundamentals of aluminium metallurgy. Woodhead Publishing, pp 439–494

  147. Wu A, Xia C, Wang S (2006) Effects of cerium on the microstructure and mechanical properties of AZ31 alloy. Rare Met 25(4):371–376

    Article  CAS  Google Scholar 

  148. Braszczyńska-Malik K, Przełożyńska E (2016) Microstructure of Mg–Al–RE-type experimental magnesium alloy gravity cast into sand mould. Arch Foundry Eng 16(2):115–118

    Article  Google Scholar 

  149. Zulkafli M (2016) Microstructure control of Mg alloy for structural component application, BE Thesis, Brisbane. The University of Queensland, Australia

    Google Scholar 

  150. Song Y, Liu Y, Wang S, Yu S, Zhu X (2007) Effect of cerium addition on microstructure and corrosion resistance of die cast AZ91 magnesium alloy. Mater Corros 58(3):189–192

    Article  CAS  Google Scholar 

  151. Wang W, Zhang J, Li G, Feng Y, Su M, Jiao Y, Wu R, Zhang Z (2017) Microstructural stability of heat-resistant high-pressure die-cast Mg–4Al–4Ce alloy. Int J Mater Res 108(5):427–430

    Article  CAS  Google Scholar 

  152. Hawksworth A, Rainforth W, Jones H (1999) Thermal stability of Al/Al11 Ce3 and Al/Al11 La3/Al3 Ni eutectics obtained by Bridgman growth. Mater Sci Technol 15(6):616–620

    Article  CAS  Google Scholar 

  153. Cao X, Wang S, Wang J (2009) The effect of annealing and aging on the high temperature internal friction spectra of Al–Ce alloy. Mater Sci Eng B 163(3):174–178

    Article  CAS  Google Scholar 

  154. Du J, Ding D, Zhang W, Xu Z, Gao Y, Chen G, You X, Chen R, Huang Y, Tang J (2018) Effect of Ce addition on the microstructure and properties of Al–Cu–Mn–Mg–Fe lithium battery shell alloy. Mater Charact 142:252–260

    Article  CAS  Google Scholar 

  155. Zhang X, Wang Z, Zhou Z, Xu J (2017) Influence of rare earth (Ce and La) addition on the performance of Al-3.0 wt%Mg alloy. J Wuhan Unive Technol Mater Sci Ed 32(3):611–618

    Article  CAS  Google Scholar 

  156. Buttinelli D, Felli F, Lupi C, Marani F (1995) Mechanical properties of extruded AlLiMg alloys with small ceriurn alloying addition. Metall Sci Technol 13(2):47–56

    CAS  Google Scholar 

  157. Meng L. Stress concentration sensitivity of Al–Li based Alloys with various contents of impurities and cerium addition. http://www.paper.edu.cn. Accessed 20 Nov 2018

  158. Ao X, Xing S, Yu B, Han Q (2018) Effect of Ce addition on microstructures and mechanical properties of A380 aluminum alloy prepared by squeeze-casting. Int J Miner Metall Mater 25(5):553–564

    Article  CAS  Google Scholar 

  159. Yu X, Dai H, Li Z, Sun J, Zhao J, Li C, Liu W (2018) Improved recrystallization resistance of Al–Cu–Li–Zr alloy through Ce addition. Metals 8(12):1035

    Article  Google Scholar 

  160. Liu S, Cui C, Wang X, Li N, Shi J, Cui S, Chen P (2017) Effect of cooling rate on microstructure and grain refining behavior of in situ CeB6/Al composite inoculant in aluminum. Metals 7(6):204

    Article  CAS  Google Scholar 

  161. Liao H, Liu Y, Lu C, Wang Q (2015) Effect of Ce addition on castability, mechanical properties and electric conductivity of Al–0.3Si–0.2Mg alloy. Int J Cast Met Res 28(4):213–220

    Article  CAS  Google Scholar 

  162. Liu J, Xue F (2001) Effect of 0.2% Ce alloying on hot tearing trend of cast Al–Cu alloys. Mech Sci Technol 20(5):732

    Google Scholar 

  163. Anasyida A, Daud A, Ghazali M (2009) Dry sliding wear behaviour of Al–4Si–4Mg alloys by addition of cerium. Int J Mech Mater Eng 4(2):127–130

    Google Scholar 

  164. Reduced heat treatment requirements for components made with aluminum-cerium alloys. Heat Treat Today, 14-06-2016. https://www.heattreattoday.com. Accessed 15 Nov 2018

  165. Simpson J (2016) Aluminum-Cerium alloys could boost engine efficiency and rare earth production. Engineering 360, 10-06-2016. https://insights.globalspec.com/article/2808/aluminum-cerium-alloys-could-boost-engine-efficiency-and-rare-earth-production. Accessed 15 Nov 2018

  166. Liao H, Liu Y, Lu C, Wang Q (2017) Mechanisms for Ce-induced remarkable improvement of conductivity in Al alloys. J Mater Res 32(3):566–574

    Article  CAS  Google Scholar 

  167. Li P, Wu Z, Wang Y, Gao X, Wang Z, Li Z (2006) Effect of cerium on mechanical performance and electrical conductivity of aluminum rod for electrical purpose. J Rare Earths 24(1):355–357

    Article  Google Scholar 

  168. Wilka VC (1976) Aluminum cerium iron electrical conductor and method for making same. US Patent 3 964 935, 22 June 1976

  169. Barth O (1912) Metallurgie 8:261

    Google Scholar 

  170. Wu J, Hu W, Jia J, Jiang J, Ma S, Wang X, Gao S (2017) Effect of cerium on microstructure and properties of 5005 aluminum alloy. Chin Rare Earths 38(4):81–87

    Google Scholar 

  171. Voncina M (2011) Thermodynamic and kinetic model of solidification of Al–Si–Mg and Al–Si–Cu alloy system with Ce addition, Ph.D. Thesis, University of Ljubljana

  172. Zuo S, Shi Z, Li Z, Zhang R (2009) Effects of silicon, manganese and Ce-rich mixed rare earth on microstructure of industrial pure aluminum. Light Alloy Fabrication Technology, vol. 07, no.en.cnki.com.cn

  173. Zhao Y, Wu F, Zhang JC, Guo E, Zhang C (2011) Effect of Cerium addition on microstructure and mechanical properties of 4004 aluminum alloy. In: Proceedings of 2011 international conference on electronic & mechanical engineering and information technology, vol 9, Harbin, China

  174. Kores S, Voncina M, Kosec B, Medved J (2012) Formation of AlFeSi phase in AlSi12 alloy with Ce addition. Metalurgija 51(2):216–220

    CAS  Google Scholar 

  175. Seman A, Daud A (2008) The effect of cerium addition on the microstructure of AlSiMgCe alloy. Solid State Sci Technol 16(1):168–174

    Google Scholar 

  176. Ahmad R, Asmael M (2016) Influence of cerium on microstructure and solidification of eutectic Al–Si piston alloy. J Mater Manuf Proc 31(15):1948–1957

    Article  CAS  Google Scholar 

  177. Li Q, Xia T, Lan Y, Zhao W, Fan L, Li P (2013) Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al–20%Si alloy. J Alloys Compd 562(1):25–32

    Article  CAS  Google Scholar 

  178. Yii S, Anas N, Ramdziah M, Anasydia A (2016) Microstructural and mechanical properties of Al–20%Si containing cerium. Procedia Chem 19:304–310

    Article  CAS  Google Scholar 

  179. Kores S, Voncina M, Kosec B, Mrvar P, Medved J (2010) Effect of cerium additions on the AlSi17 casting alloy. Mater Technol 44(3):137–140

    CAS  Google Scholar 

  180. Lin G, Li K, Feng D, Feng Y, Song W, Xiao M (2019) Effect of LaCe addition on microstructure and mechanical properties of Al–18Si–4Cu–0.5Mg alloy. Trans Nonferr Met Soc China (in press)

  181. Aiqin W, Zhang L, Jinpei X (2013) Effects of cerium and phosphorus on microstructures and properties of hypereutectic Al–21%Si alloy. J Rare Earths 31(5):522–525

    Article  CAS  Google Scholar 

  182. Al-Obasi A, El-Danaf E, Ragab A, Soliman M, Alhaza A (2017) Statistical model for the mechanical properties of Al–Cu–Mg–Ag alloys at high temperatures. Adv Mater Sci Eng. Article ID 1691465. https://doi.org/10.1155/2017/1691465

  183. Xiao D, Wang J, Ding D, Yang H (2003) Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al–Cu–Mg–Ag alloy. J Alloys Compd 352:84–88

    Article  CAS  Google Scholar 

  184. Xiao D, Wang J, Ding D (2004) Effect of minor cerium additions on microstructure and mechanical properties of cast Al–Cu–Mg–Ag alloy. Mater Sci Technol 20(10):1237–1240

    Article  CAS  Google Scholar 

  185. Chaubey A, Mohapatra S, Jayasankar K, Pradhan S, Satpati B, Sahay S, Mishra B, Mukharjee P (2009) Effect of cerium addition on microstructure and mechanical properties of Al–Zn–Mg–Cu allo. Trans Indian Inst Met 62(6):539–543

    Article  CAS  Google Scholar 

  186. Wang W, Zhang X, Gao Z, Jia Y, Ye L, Zheng D, Liu L (2010) Influences of Ce addition on the microstructures and mechanical properties of 2519A aluminum alloy plate. J Alloys Compd 491(1–2):366–371

    Article  CAS  Google Scholar 

  187. Zhong J, Zheng Z, Luo X (2014) A new ultrahigh strength Al–Cu–Li alloy. Mater Sci Forum 794–796:1050–1056

    Article  CAS  Google Scholar 

  188. Buttinelli D, Felli F, Lupi C (eds) (1993) Aluminum-lithium, vol 11. Oberusel, Germany, p 433

  189. Buttinelli D, Felli F, Lupi C, Marani F (1992) Effect of cerium addition on grain size and on recrystallization of Al–Li–Mg alloys. Mater Sci Forum 94–96:771–778

    Article  Google Scholar 

  190. Lepper K, James M, Chashechkina J, Rigney D (1997) Sliding behavior of selected aluminum alloys. Wear 203–204:46–56

    Article  Google Scholar 

  191. Cao C, Liu W, Liu Z, Xu J, Hwang I, De Rosa I, Li X (2018) Scalable manufacturing of immiscible Al–Bi alloy by self-assembled nanoparticles. Mater Des 146:163–1171

    Article  CAS  Google Scholar 

  192. Man T, Zhang L, Xu N, Wang W, Xiang Z, Wang E (2016) Effect of rare-earth Ce on macrosegregation in Al–Bi immiscible alloys. Metals 6:177

    Article  CAS  Google Scholar 

  193. Hosseinifar M, Malakhov D (2008) Effect of Ce and La on microstructure and properties of a 6xxx series type aluminum alloy. J Mater Sci 43:7157. https://doi.org/10.1007/s10853-008-3022-2

    Article  CAS  Google Scholar 

  194. Tsai Y, Lee S, Lin C (2011) Effect of trace Ce addition on the microstructures and mechanical properties of A356 (AL–7SI–0.35Mg) aluminum alloys. J Chin Inst Eng 34(5):609–616

    Article  CAS  Google Scholar 

  195. Tsai Y, Chou C, Jeng R, Lee S, Lin C (2011) Effect of rare earth elements addition on microstructures and mechanical properties of A356 alloy. Int J Cast Met Res 24(2):83–87

    Article  CAS  Google Scholar 

  196. Lin J, Yanar C, Zhang W, Jacobsen P (2006) Aluminum alloys for producing high performance shaped castings. US Patent 7 087 125 B2, 8 Aug 2006

  197. Song M, Chen K, Huang L (2007) Effects of Ce and Ti on the microstructures and mechanical properties of an Al–Cu–Mg–Ag alloy. Rare Met (Beijing, China) 26(1):28–32

    CAS  Google Scholar 

  198. Ding W, Xu C, Zhang H, Zhao W, Guo T, Xia T (2017) Effect of Al–5Ti–0.62C–0.2Ce master alloy on the microstructure and tensile properties of commercial pure Al and hypoeutectic Al–8Si alloy. Metals 7:227

    Article  CAS  Google Scholar 

  199. Gillett H, Schnee V (1923) Cerium in aluminum alloys. Ind Eng Chem 15(7):709–711

    Article  CAS  Google Scholar 

  200. Zhang Z, Wang Y, Bian X (2004) Microstructure selection map for rapidly solidified Al-rich Al–Ce alloys. J Cryst Growth 260:557–565

    Article  CAS  Google Scholar 

  201. Langenbeck S, Griffith W, Hildemann GJ, Simon J (1986) Development of dispersion-strengthened aluminum alloys. In: Fine ME, Starke EA Jr (eds) Rapidly solidified powder aluminum alloys, ASTN STP890. American Society for Testing and Materials, Philadelphia, pp 410–422

    Chapter  Google Scholar 

  202. Defining Character: The Gleeble at Alcoa. Gleeble® Newsletter, 1988. https://gleeble.com/resources/92-resources/casestudies/167-defining-character-the-gleeble-at-alcoa.html. Accessed 12 Nov 2018

  203. Inoue A, Kimura H (2001) Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminum-based system. J Light Met 1(1):31–41

    Article  Google Scholar 

  204. Zindel J, Stanley J, Field R, Fraser H (1984) Rapid solidification and subsequent analysis of some hyperutectic aluminum cased alloys. In: Rapidly solidified powder aluminum alloys, STP890. ASTM, Philadelphia, pp 186–210

  205. Belov N, Khvan A, Alabin A (2006) Microstructure and phase composition of Al–Ce–Cu alloys in the Al-Rich corner. Mater Sci Forum 519–521:395–400

    Article  Google Scholar 

  206. Khvan A (2008) Optimization of the phase composition of high-tech aluminum alloys with a composite structure based on Ce- and Ca containing eutectics, Ph.D. thesis. NUST MISIS, Moscow

  207. Sikum X, Rongxi Y, Zhi G, Xiang X, Hu C, Xiuyan G (2010) Effects of rare earth Ce on casting properties of Al–4.5Cu alloy. Adv Mater Res 135:1–4

    Article  CAS  Google Scholar 

  208. Manca D, Churyumov A, Pozdniakov A, Prosviryakov A, Ryabov D, Krokhin A, Korolev V, Daubarayte D (2018) Microstructure and properties of novel heat resistant Al–Ce–Cu alloy for additive manufacturing. Met Mater Int. https://doi.org/10.1007/s12540-018-00211-0

    Article  Google Scholar 

  209. Dobrzański LA, Labisz K, Maniara R, Olsen A (2009) Microstructure and mechanical properties of the Al–Ti alloy with cerium addition. J Achiev Mater Manuf Eng 37(2):622–629

    Google Scholar 

  210. Michalcova A, Vojtech D, Schumacher G, Novak P, Klementova M, Serak J, Mudrova M, Valdaufova J (2010) Influence of cooling rate and cerium addition on rapidly solidified Al-TM alloy. Kovove Mater 48:1–7

    CAS  Google Scholar 

  211. Rios O, King A, McCall S, McGuire M, Sims Z, Thorne C, Weiss D, Ludtka G (2015) Castable high-temperature Ce-modified Al alloys. US Patent 20170096730A1, 09 July 2015

  212. Weiss D, Rios O, Sims Z, McCall S, Ott R (2018) Casting characteristics of high cerium content aluminum alloys. In: Light Metals 2017, Lawrence Livermore National Laboratory, LLNL-JRNL-738126. https://e-reports-ext.llnl.gov/pdf/891293.pdf

  213. Weiss D (2019) Improved high-temperature aluminum alloys containing cerium. J Mater Eng Perform 28(4):1903–1908

    Article  CAS  Google Scholar 

  214. Sims Z, Rios O, Weiss D, Turchi P, Perron A, Lee J, Li T, Hammons J, Bagge-Hansen M, Willey T, An K, Chen Y, King A, McCall S (2017) High performance aluminum–cerium alloys for high-temperature applications. Mater Horiz 4(6):1070–1078

    Article  CAS  Google Scholar 

  215. Plotkowski A, Rios O, Sridharan N, Sims Z, Unocic K, Ott R, Dehoff R, Babu S (2017) Evaluation of an Al–Ce alloy for laser additive manufacturing. Acta Mater 126:507–519

    Article  CAS  Google Scholar 

  216. Hume-Rothery W, Smallman R, Haworth C (1969) Structure of metals and alloys. Institute of Metals, London

    Google Scholar 

  217. Zeng Q, Ding Y, Mao W, Blomqvist A, Ahuja A, Yang W, Shu J (2009) Substitutional alloy of Ce and Al. Proc Natl Acad Sci USA 106(8):2515–2518

    Article  CAS  Google Scholar 

  218. Wu M, Tse J, Wang S, Wang C, Jiang J (2015) Origin of pressure-induced crystallization of Ce75Al25 metallic glass. Nat Commun 6:6493. https://doi.org/10.1038/ncomms7493

    Article  CAS  Google Scholar 

  219. He Y, Poon S, Shiflet G (1988) Synthesis and properties of metallic glasses that contain aluminum. Science 241(4873):1640–1642

    Article  CAS  Google Scholar 

  220. Pandey A (2011) L12 strengthened amorphous aluminum alloys. US Patent 7 875 131 B2, 25 Jan 2011

  221. Innoue A (1998) Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog Mater Sci 43(5):365–520

    Article  Google Scholar 

  222. Inoue A, Ohtera K, Masumoto T (1988) Glass transition behavior of Al-Y-Ni and Al–Ce–Ni amorphous alloys. Jpn J Appl Phys 27(9):L736–L739

    Article  CAS  Google Scholar 

  223. Zeng Q, Ding Y, Mao W, Yang W, Sinogeikin S, Shu J, Mao H, Jiang J (2010) Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass. Phys Rev Lett 104:105702

    Article  CAS  Google Scholar 

  224. Luo Q, Björn Schwarz B, Swarbrick J, Bednarcik J, Zhu Y, Tang M, Zheng L, Li R, Shen J, Eckert J (2018) Local-structure change rendered by electronic localization-delocalization transition in cerium-based metallic glasse. Phys Rev B 97:064104

    Article  CAS  Google Scholar 

  225. Sheng H, Liu H, Cheng Y, Wen J, Lee P, Luo W, Shastri S, Ma E (2007) Polyamorphism in a metallic glass. Nat Mater 6:192–197

    Article  CAS  Google Scholar 

  226. Yavari A (2007) Metallic glasses. The changing faces of disorder. Nat Mater 6(3):181–183

    Article  CAS  Google Scholar 

  227. Inoue A, Ohtera K, Kita K, Masumoto T (1988) New amorphous alloys with good ductility in Al–Ce-M (M = Nb, Fe Co, Ni or Cu) systems. Jpn J Appl Phys 27(10):L1796

    Article  CAS  Google Scholar 

  228. Triveno Rios C, Surinachb S, Barob M, Bolfarinia C, Bottaa W, Kiminami C (2008) Glass forming ability of the Al–Ce–Ni system. J Non-Cryst Solids 354:4874–4877

    Article  CAS  Google Scholar 

  229. TrivenoRios C, Surinach S, Baro M, Bolfinari C, Botta W, Kiminami C (2008) Crystallization behaviour of amorphous alloys in the Al–Ce–Ni system. Rev Adv Mater Sci 18:469–475

    Google Scholar 

  230. Zhang Z, Zhou W, Xiong X, Kong L, Li J (2012) Glass forming ability and primary crystallization behavior of Al–Ni–Ce alloys. Intermetallics 24:1–6

    Article  CAS  Google Scholar 

  231. Tsai A, Kamiyama T, Kawamura Y, Inoue A, Masumoto T (1997) (ZrB2 + Al2O3 + Al3Zr)p/Al–4Cu composite synthesized by magneto-chemical melt reaction. Acta Mater 45(4):1477

    Article  CAS  Google Scholar 

  232. Chen H, He Y, Shiflet G, Poon S (1994) Deformation-induced crystal formation in shear bands of amorphous alloys. Nature 541–543(6463):367

    Google Scholar 

  233. Kovács Z, Henits P, Zhylaev A, Révész Á (2006) Deformation induced primary crystallization in a thermally non-primary crystallizing amorphous Al85Ce8Ni5Co2 alloy. Scr Mater 54(10):1733–1737

    Article  CAS  Google Scholar 

  234. Kovacs Z, Henits P, Zhilyaev A, Chinh N, Revesz A (2006) Microstructural characterization of the crystallization sequence of a severe plastically deformed Al–Ce–Ni–Co amorphous alloy. Mater Sci Forum 519–521:1329–1334

    Article  Google Scholar 

  235. Henits P, Revesz A, Varga L, Kovacs Z (2011) The evolution of the microstructure in amorphous Al85Ce8Ni5Co2 alloy during heat treatment and severe plastic deformation: a comparative study. Intermetallics 19(3):267–275

    Article  CAS  Google Scholar 

  236. Zeng Q, Lin Y, Liu Y, Zeng Z, Shi Y, Zhang B, Lou H, Sinogeikin S (2016) General 2.5 power law of metallic glasses. Proc Natl Acad Sci USA 113(7):1714–1718

    Article  CAS  Google Scholar 

  237. Chen M (2011) A brief overview of bulk metallic glasses. NPG Asia Mater 3:82–90

    Article  Google Scholar 

  238. Chen Z, Gao J, Wu Y, Wang H, Liu X, Lu Z (2013) Designing novel bulk metallic glass composites with a high aluminum content. Sci Rep 3:3353

    Article  CAS  Google Scholar 

  239. Zhang B, Pan M, Zhao D, Wanga W (2004) Soft” bulk metallic glasses based on cerium. Appl Phys Lett 85:61

    Article  CAS  Google Scholar 

  240. Chen L, Eakins D, Chapman D, Thadani N, Swift D, Kumar M (2014) J Phys Conf Ser (18th APS-SCCM and 24th AIRAPT) 500:112016

    Google Scholar 

  241. Mohammed H, Reddy M, Ubaid F, Shakoor A, Mohamed A (2018) Structural and mechanical properties of CeO2 reinforced Al matrix nanocomposites. Adv Mater Lett 9(8):602–605

    Article  CAS  Google Scholar 

  242. Skrzekut T, Kula A, Blaz L, Wloch G, Sugamata M (2014) High-strength and thermally stable Al–CeO2 composite produced by means of mechanical alloying. Int J Mater Res 105(3):282–287

    Article  CAS  Google Scholar 

  243. Sharma A, Bhattacharya S, Das S, Fecht H, Das K (2013) Development of lead free pulse electrodeposited tin based composite solder coating reinforced with ex situ cerium oxide nanoparticles. J Alloys Compd 574:609–616

    Article  CAS  Google Scholar 

  244. Khleif A, Abdulsahib Y, Hanon M (2017) Studying properties of Al–12wt%Si alloy reinforced with CeO2 nano powders. Iraqi J Mech Mater Eng 17(1):87–99

    Google Scholar 

  245. Wang H, Li G, Zhao Y, Chen G (2010) In situ fabrication and microstructure of Al2O3 particles reinforced aluminum matrix composites. Mater Sci Eng A 527:2881–2885

    Article  CAS  Google Scholar 

  246. Li G, Zhao Y, Dai Q, Cheng X, Wang H, Chen G (2007) Fabrication and properties of in situ synthesized particles reinforced aluminum matrix composites of Al–Zr–O–B system. J Mater Sci 42(14):5442–5447. https://doi.org/10.1007/s10853-006-0790-4

    Article  CAS  Google Scholar 

  247. Tang F, Hagiwara M, Schoenung J (2005) Microstructure and tensile properties of bulk nanostructured Al-5083/SiCp composites prepared by cryomilling. Mater Sci Eng A 407(1–2):306–314

    Article  CAS  Google Scholar 

  248. Chen C, Kao P, Chang L, Ho N (2010) Effect of processing parameters on microstructure and mechanical properties of an Al-Al11Ce3-Al2O3 in situ composite produced by friction stir processing. Met Mater Trans A 41:513–522

    Article  CAS  Google Scholar 

  249. Zhang Y, Ma N, Wang H, Le Y, Li S (2005) Effect of Ti on the damping behavior of aluminum composite reinforced with in situ TiB2 particulate. Scr Mater 53(10):1171–1174

    Article  CAS  Google Scholar 

  250. Kok M (2006) Abrasive wear of Al2O3 particle reinforced alloy composites fabricated by vortex method. Compos Part A 37:457–464

    Article  CAS  Google Scholar 

  251. Gale W, Totemeier T (2004) Smithells metals reference book, 8th edn. Elsevier, Oxford

    Google Scholar 

  252. Borzone G, Cacciamani G, Ferro R (1991) Heats of formation of aluminum-cerium intermetallic compounds. Metall Trans A 22(9):2119–2123

    Article  Google Scholar 

  253. Franco-Madrid J, Garay-Reyes C, Estrada-Guel I, Nava-Dino C, Maldonado-Orozco M, Martínez-Sánchez R (2017) Microstructural and mechanical behavior in the Al2024 alloy modified with addition of CeO2. Microsc Microanal 23(Suppl 1):1650–1651

    Article  Google Scholar 

  254. Zhao Y, Zhang S, Chen G, Cheng X, Dai Q (2008) (ZrB2 + Al2O3 + Al3Zr)p/Al–4Cu composite synthesized by magneto-chemical melt reaction. Mater Sci Eng A 487(1–2):1–6

    Article  CAS  Google Scholar 

  255. Baldenebro-Lopez F, Baldenebro-Lopez J, Santos-Beltrán A, Gallegos-Orozco V (2015) Effect on microstructure and hardness of A2024 aluminum alloy doped cerium. Microsc Microanal 21(Suppl. 3):1058

    Google Scholar 

  256. Xue L, Wang J, Han Y, Chen C, Sun B (2012) Behavior of CeO2 additive in in situ TiB2 particles reinforced 2014 Al alloy composite. Trans Nonferr Met Soc China 22(5):1012–1017

    Article  CAS  Google Scholar 

  257. Sharma P, Paliwal K, Khanduja D, Dabra V, Saini R (2017) AA6061/B4C/graphite/CeO2 reinforced hybrid composite development and evaluation of its properties. IUP J Mech Eng 41611:1–10

    Google Scholar 

  258. Han H, Wang A, Xie J, Wang R (2016) Effects of CeO2 on microstructure, friction and wear properties of SiCp/Al–Si composites. Emerg Mater Res 5(1):88–94

    Article  CAS  Google Scholar 

  259. Bahrami A, Soltani N, Tech-Canul M (2015) Effect of sintering temperature on tribological behavior of Ce-TZP/Al2O3-aluminum nanocomposite. J Compos Mater 49(28):3507–3514

    Article  CAS  Google Scholar 

  260. Shibli M, Archana S, Ashraf P (2008) Development of nano cerium oxide incorporated aluminium alloy sacrificial anode for marine applications. Corr Sci 50:2232–2238

    Article  CAS  Google Scholar 

  261. Ashraf M, Shibli S (2007) Reinforcing aluminium with cerium oxide: a new and effective technique to prevent corrosion in marine environments. Electrochem Commun 9(3):443–448

    Article  CAS  Google Scholar 

  262. Ashraf P, Shibli S (2008) Development of CeO2- and TiO2-incorporated aluminium metal-composite matrix with high resistance to corrosion and biofouling. J Solid State Electrochem 12(3):315–322

    Article  CAS  Google Scholar 

  263. Ashraf M, Shibli S (2009) Development of cerium oxide and nickel oxide-incorporated aluminium matrix for marine applications. J Alloys Compd 484(1):477–482

    Article  CAS  Google Scholar 

  264. Johansen H, Brett M, Motheo A (2012) Corrosion protection of aluminium alloy by cerium conversion and conducting. Corr Sci 63:342–350

    Article  CAS  Google Scholar 

  265. Yasakau K, Zheludkevich M, Lamaka S, Ferreira M (2006) Mechanism of corrosion inhibition of AA2024 by rare-earth compounds. J Phys Chem B 110(11):5515–5528

    Article  CAS  Google Scholar 

  266. Popov N, Akashev L, Shevchenko V, Grigorov L (2017) Peculiarities of surface interaction of Al + REM alloys with air and water. Univers J Phys Appl 11(4):102–108

    Google Scholar 

  267. Shevchenko V (2011) Effect of alloying on the kinetics and mechanism of oxidation of powdered aluminum-based alloys with rare- and alkaline-earth metals. Combus Explos Shock Waves 47(2):166–173

    Article  Google Scholar 

  268. Hinton BR, Arnott DR, Ryan NE (1984) The inhibition of aluminum alloy corrosion by cerous cations. Met Forum 7(4):211–217

    CAS  Google Scholar 

  269. Wang C, Jiang F, Wang F (2004) Cerium chemical conversion coating for aluminum alloy 2024-T3 and its corrosion resistance. Corrosion 60(3):237

    Article  CAS  Google Scholar 

  270. Andreeva R, Stoyanova E, Tsanev A, Stoychev D (2016) Influence of the surface pre-treatment of aluminum on the processes of formation of cerium oxides protective films. J Phys: Conf Ser 700:012049

    Google Scholar 

  271. Harvey T (2013) Cerium-based conversion coatings on aluminium alloys: a process review. Corros Eng Sci Technol 48(4):248–269

    Article  CAS  Google Scholar 

  272. Hamdy A, Beccaria A, Traverso P (2002) Corrosion protection of aluminium metal–matrix composites by cerium conversion coatings. Surf Interface Anal 34(1):171–175

    Article  CAS  Google Scholar 

  273. Lin C, Maddela S, Fahrenholtz W, O’Keefe M (2012) Deposition of cerium-based conversion coatings on aluminum alloy 380. Int J Corros. Paper ID 760284

  274. Chen S, Zhang S, Ren X, Xu S, Yin L (2015) Cerium-based chemical conversion coating on aluminum alloy to inhibit corrosion in chloride solution. Int J Electrochem Sci 10:9073–9088

    CAS  Google Scholar 

  275. Bethencourt M, Cano M, Botana J, Marcos-Barcena M (2001) Cerium based conversion coatings for aluminium alloys. Improving the formation mechanism. In: EUROCORR 2001, At Riva del Garda, Italy

  276. Ferrel-Álvarez C, Domínguez-Crespo M, Torres-Huerta A, Cong H, Brachetti-Sibaja S, Brachetti-Sibaja A (2017) Polymers 9:178. https://doi.org/10.3390/polym9050178

    Article  CAS  Google Scholar 

  277. KumarGhosh S (ed) (2009) Self-healing materials: fundamentals, design strategies, and applications. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  278. Hassannejad H, Nour A (2016) Synthesis and evaluation of self-healing cerium-doped chitosan nanocomposite coatings on AA5083-H32. Int J Electrochem Sci 11:2106–2118

    CAS  Google Scholar 

  279. Amra M, Khalil R, Dehmolaei R (2015) Mechanical properties and corrosion behavior of CeO2 and SiC incorporated Al5083 alloy surface composites. J Mater Eng Perform 24(8):3169–3179

    Article  CAS  Google Scholar 

  280. Tsaneva G, Kozhukharov S, Ivanova M, Gerwann J, Scheem M, Schmids T (2008) Functional nanocomposite coatiing for protection of aluminum and steel. J Univ Chem Technol Metall 43(2):231–238

    CAS  Google Scholar 

  281. Li D, Deng Y, Guo B, Li G (2000) Investigation of cerium salt/sulfuric acid anodizing technology for 1420 aluminum alloy. Mater Sci Forum 331–337:1695–1700

    Article  Google Scholar 

  282. Stoffer J, O’Keefe T, Lin X, Morris E, Yu P (1999) Electrodeposition of cerium-based coatings for corrosion protection of aluminum alloys. US Patent 5 932 083, 3 Aug 1999

  283. Jakab M, Scully J. Cerium, cobalt and molybdate cation storage states, release and corrosion inhibition when delivered from on Al-transition metal-rare earth metal alloys. http://www.virginia.edu/cese/research/Marta.pdf. Accessed 8 Feb 2019

  284. Choate W, Green J (2004) Modeling the impact of secondary recovery (recycling) on the U.S. aluminum supply and nominal energy requirements. In: Tabereaux AT (ed) Light metals 2004. TMS, Warrendale, pp 913–918

    Google Scholar 

  285. Das S, Green J, Kaufman J (2007) The development of recycle-friendly automotive aluminum alloys. JOM 59:47–51

    Article  CAS  Google Scholar 

  286. Bell S, Davis B, Javaid A, Essadiqi E (2003) Final report on scrap management, sorting and classification of aluminum, report no. 2003-22(CF). Natural Resources Canada, Ottawa

  287. Das S (2006) Emerging trends in aluminum recycling: reasons and responses. In: Galloway TJ (ed) Light metals 2006. TMS (The Minerals, Metals & Materials Society), Warrendale

    Google Scholar 

  288. Das S (2006) Designing aluminum alloys for a recycling friendly world. Mater Sci Forum 519–521:1239–1244

    Article  Google Scholar 

  289. Alcoa to recycle aluminium scrap of Boeing aeroplanes. 24-06-2013. https://www.aerospace-technology.com. [Accessed 07 01 2019]

  290. Wilson W, Worth J, Short E, Pygall C (1987) Recycling of aluminum lithium scrap. J Phys Colloq 48(C3):C3-75–C3-83

    Article  Google Scholar 

  291. Ferron C, Henry P (2015) A review of the recycling of rare earth metals. Can Metall Q 54(4):388–394

    Article  CAS  Google Scholar 

  292. Rebitzer G, Ekvall T, Frischknecht R, Hunkeler D, Norris G, Rydberg T (2004) Life cycle assessment Part 1: framework, goal and scope definition, inventory analysis, and applications. Environ Int 30:701–720

    Article  CAS  Google Scholar 

  293. Hirota K, Nakamura H, Minowa T, Honshima M (2006) Coercivity enhancement by the grain boundary diffusion process to Nd–Fe–B sintered magnets. IEEE Trans Magn 42(10):2909–2911

    Article  CAS  Google Scholar 

  294. Bleiwas D (2013) Potential for recovery of cerium contained in automotive catalytic converters—Open-File Report 2013–1037. U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia

  295. Borra C, Vlugt J, Yang Y, Offerman S (2018) Recovery of cerium from glass polishing aaste: a critical review. Metals 8:801

    Article  Google Scholar 

  296. Moon W, Na S, Oh H (2014) Method for recycling cerium oxide abrasives. US Patent 8 894 733 B2, 25 Nov 2014

  297. Lovik A, Modaresi R, Muller D (2014) Long-term strategies for increased recycling of automotive aluminum and its alloying element. Environ Sci Technol 14(8):4257–4265

    Article  CAS  Google Scholar 

  298. Nakajima K, Takeda O, Miki T, Matsubae K, Nakamura S, Nakasaka T (2010) Thermodynamic analysis of contamination by alloying elements in aluminum recycling. Environ Sci Technol 44(14):5594–5600

    Article  CAS  Google Scholar 

  299. Iyer A, Lim H, Rios O, Sims Z, Weiss D (2018) An economic model and experiments to understand aluminum-cerium alloy recycling. JOM 70(4):547–552

    Article  CAS  Google Scholar 

  300. Becle C, Lemaire R (1967) Structures cristallines des composés DyAl et CeAl et des autres composés equiatomiques de l’aluminium avec les métaux des terres rares. Acta Cryst 23:840–845

    Article  CAS  Google Scholar 

  301. Adams LH, Davis B (1962) Rapidly running transitions at high pressure. Proc Natl Acad Sci USA 48(6):982–990

    Article  CAS  Google Scholar 

  302. Beaudry BJ, Palmer PE (1974) The lattice parameters of La, Ce, Pr, Nd, Sm, Eu and Yb. J Less-Common Met 34(2):225–231

    Article  CAS  Google Scholar 

  303. Spedding F, Hanak J, Daane A (1961) High temperature allotropy and thermal expansion of the rare-earth metals. J Less-Common Met 3(2):110–124

    Article  CAS  Google Scholar 

  304. Koskenmaki DC, Gschneidner KA (1978) In: Gschneidner KA Jr, Eyring L (eds) Chap. 4. Handbook on the physics and chemistry of rare earths. North-Holland, Amsterdam, p 337

    Google Scholar 

  305. McMahon MI, Nelmes R (1997) Different results for the equilibrium phases of cerium above 5 GPa. J Phys Rev Lett 78:3884

    Article  CAS  Google Scholar 

  306. Fujioka N, Endo S, Kawai N (1977) Resistance behavior at alpha tetragonal transition in cerium. Phys Lett A 60(4):340

    Article  Google Scholar 

  307. Nikolaev A, Tsvyashchenko A (2012) Puzzle of the gamma into alpha and other phase transitions in cerium. Phys Usp 55(7):657. https://doi.org/10.3367/ufne.0182.201207b.0701

    Article  CAS  Google Scholar 

  308. Flandorfer H, Rogl P (1996) The crystal structure of two novel compounds: CeAlSi2 and Ce3Al4Si6. J Solid State Chem 127(2):308–314

    Article  CAS  Google Scholar 

  309. Munitz A, Goghale A, Abbaschian G (1989) The Ce–Si (cerium-silicon) system. Bull Alloy Phase Diagr 10(1):73–78

    Article  CAS  Google Scholar 

  310. Li Y, Li Z, Liu Y, Wang X, Zhao M, Yin F (2014) Isothermal section of Al–Si–Ce ternary system at 1073 K. J Phase Equilib Diffus 35(3):276–283

    Article  CAS  Google Scholar 

  311. Shaha S, Czerwinski F, Kasprzak W, Friedman J, Chen D (2015) Microstructure and mechanical properties of Al–Si cast alloy with additions of Zr–V–Ti. Mater Des 83:801–812

    Article  CAS  Google Scholar 

  312. Kononenko V, Golubev S (1990) “Phase diagrams of binary systems of aluminum with La, Ce, Pr, Nd, Sm, Eu, Yb, Sc, and,” Izv. Akad Nauk SSSR Met 2:197–199

    Google Scholar 

  313. Yamshchikov L, Lebedev V, Nichkov I, Raspopin S, Kokoulin O (1980) Izv Vyssh Uchebn Zaved Tsv Metall 5:50–54

    Google Scholar 

  314. Schmid-Fetzer R, Gröbner J (2012) Thermodynamic database for Mg alloys—progress in multicomponent modeling. Metals 2:377–398

    Article  CAS  Google Scholar 

  315. Tang C, Du Y, Wang J, Zhou H, Zhang L, Zheng F (2010) Correlation between thermodynamics and glass forming ability in the Al–Ce–Ni system. Intermetallics 18:900–906

    Article  CAS  Google Scholar 

  316. Wang H, Li Z, Chen Z, Yang B (2016) Thermodynamic optimization of the Ni–Al–Ce ternary system. J Phase Equilib Diffus 37(2):222–228

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Program of Energy Research and Development (PERD) of Natural Resources Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Czerwinski.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czerwinski, F. Cerium in aluminum alloys. J Mater Sci 55, 24–72 (2020). https://doi.org/10.1007/s10853-019-03892-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03892-z

Navigation