Skip to main content
Log in

Fast X-ray detectors based on bulk β-Ga2O3 (Fe)

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

(010) EFG-grown Fe-doped β-Ga2O3 was tested as a low-noise X-ray detector with Ti/Au electrodes vertical structure. Its performance at low, high and no applied voltages was examined. The fabricated detector showed high X-ray detection performance manifested in its signal’s short fall and rise time (< 0.3 s) in all operation modes, showing two orders of magnitude decrease in response time of β-Ga2O3 X-ray detectors. The same temporal response was exhibited by a tested Au/Ni/β-Ga2O3/Ti/Au device. The detector’s signal is also characterized by excellent linear relation with X-ray tube current and high signal-to-noise ratio (SNR) optimized at − 5 V (> 103). Moreover, the X-ray-induced current signal exhibits high stability. Sub-band UV photocurrent signal showed a significantly slower response compared to X-ray-induced conductivity signal. Possible charge transport mechanisms involving ion migration are suggested and discussed. In this study, Fe doping is shown to significantly improve X-ray detection performance of Ga2O3, consolidating the applicability of Ga2O3 as a next-generation X-ray detector functioning with low power, high SNR and linearity, and significantly improved transient characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Zhou H, Zhang J, Zhang C, Feng Q, Zhao S, Ma P, Hao Y (2019) A review of the most recent progresses of state-of-art gallium oxide power devices. J Semicond 40:11803. https://doi.org/10.1088/1674-4926/40/1/011803

    Article  CAS  Google Scholar 

  2. Liu Z, Li PG, Zhi YS, Wang XL, Chu XL, Tang WH (2019) Review of gallium oxide based field-effect transistors and Schottky barrier diodes. Chin Phys B 28:17105. https://doi.org/10.1088/1674-1056/28/1/017105

    Article  CAS  Google Scholar 

  3. Chen X, Ren F, Gu S, Ye J (2019) Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photonics Res 7:381–415. https://doi.org/10.1364/prj.7.000381

    Article  CAS  Google Scholar 

  4. Pearton SJ, Yang J, Cary PH, Ren F, Kim J, Tadjer MJ, Mastro MA (2018) A review of Ga2O3 materials, processing, and devices. Appl Phys Rev 5:011301. https://doi.org/10.1063/1.5006941

    Article  CAS  Google Scholar 

  5. Tadjer MJ, Lyons JL, Nepal N, Freitas JA, Koehler AD, Foster GM (2019) Review—theory and characterization of doping and defects in β-Ga2O3. ECS J Solid State Sci Technol 8:Q3187–Q3194. https://doi.org/10.1149/2.0341907jss

    Article  CAS  Google Scholar 

  6. Usui Y, Nakauchi D, Kawano N, Okada G, Kawaguchi N, Yanagida T (2018) Scintillation and optical properties of Sn-doped Ga2O3 single crystals. J Phys Chem Solids 117:36–41. https://doi.org/10.1016/j.jpcs.2018.02.027

    Article  CAS  Google Scholar 

  7. He N, Tang H, Liu B, Zhu Z, Li Q, Guo C, Gu M, Xu J, Liu J, Xu M, Chen L, Ouyang X (2018) Ultra-fast scintillation properties of β-Ga2O3 single crystals grown by Floating Zone method. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 888:9–12. https://doi.org/10.1016/j.nima.2018.01.023

    Article  CAS  Google Scholar 

  8. Makowski M, Drozdowski W, Witkowski ME, Wojtowicz AJ, Irmscher K, Schewski R, Galazka Z (2019) Tailoring the scintillation properties of β-Ga2O3 by doping with Ce and codoping with Si. Opt Mater Express 9:3738–3743. https://doi.org/10.1364/ome.9.003738

    Article  CAS  Google Scholar 

  9. Szalkai D, Galazka Z, Irmscher K, Tutto P, Klix A, Gehre D (2017) β-Ga2O3 solid-state devices for fast neutron detection. IEEE Trans Nucl Sci 64:1574–1579. https://doi.org/10.1109/TNS.2017.2698831

    Article  CAS  Google Scholar 

  10. Lu X, Zhou L, Chen L, Ouyang X, Liu B, Xu J, Tang H (2018) Schottky x-ray detectors based on a bulk β-Ga2O3 substrate. Appl Phys Lett 112:103502. https://doi.org/10.1063/1.5020178

    Article  CAS  Google Scholar 

  11. Lu X, Zhou L, Chen L, Ouyang X, Tang H, Liu B, Xu J (2019) X-ray detection performance of vertical schottky photodiodes based on a bulk β-Ga2O3 substrate grown by an EFG method. ECS J Solid State Sci Technol 8:Q3046–Q3049. https://doi.org/10.1149/2.0071907jss

    Article  CAS  Google Scholar 

  12. Liang H, Cui S, Su R, Guan P, He Y, Yang L, Chen L, Zhang Y, Mei Z, Du X (2019) Flexible x-ray detectors based on amorphous Ga2O3 thin films. ACS Photon 6:351–359. https://doi.org/10.1021/acsphotonics.8b00769

    Article  CAS  Google Scholar 

  13. Hany I, Yang G, Zhou CE, Sun C, Gundogdu K, Seyitliyev D, Danilov EO, Castellano FN, Sun D, Vetter E (2019) Low temperature cathodoluminescence study of Fe-doped β-Ga2O3. Mater Lett 257:126744. https://doi.org/10.1016/j.matlet.2019.126744

    Article  CAS  Google Scholar 

  14. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS, Olsen K (2010) XCOM: photon cross section database (version 1.5), XCOM Phot. Cross Sect. Database (Version 1.5). https://physics.nist.gov/xcom. Accessed 3 Dec 2019

  15. Polyakov AY, Smirnov NB, Shchemerov IV, Pearton SJ, Ren F, Chernykh AV, Kochkova AI (2018) Electrical properties of bulk semi-insulating β-Ga2O3 (Fe). Appl Phys Lett 113:142102. https://doi.org/10.1063/1.5051986

    Article  CAS  Google Scholar 

  16. Ingebrigtsen ME, Varley JB, Kuznetsov AY, Svensson BG, Alfieri G, Mihaila A, Badstübner U, Vines L (2018) Iron and intrinsic deep level states in Ga2O3. Appl Phys Lett 112:042104. https://doi.org/10.1063/1.5020134

    Article  CAS  Google Scholar 

  17. Polyakov AY, Smirnov NB, Schemerov IV, Chernykh AV, Yakimov EB, Kochkova AI, Tereshchenko AN, Pearton SJ (2019) Electrical properties, deep levels and luminescence related to Fe in bulk semi-insulating β-Ga2O3 doped with Fe. ECS J Solid State Sci Technol 8:Q3091–Q3096. https://doi.org/10.1149/2.0171907jss

    Article  CAS  Google Scholar 

  18. Lin W, Stoumpos CC, Liu Z, Das S, Kontsevoi OY, He Y, Malliakas CD, Chen H, Wessels BW, Kanatzidis MG (2017) TlSn2I5, a robust halide antiperovskite semiconductor for γ-ray detection at room temperature. ACS Photonics 4:1805–1813. https://doi.org/10.1021/acsphotonics.7b00388

    Article  CAS  Google Scholar 

  19. Simon M, Ford RA, Franklin AR, Grabowski SP, Menser B, Much G, Nascetti A, Overdick M, Powell MJ, Wiechert DU (2005) Analysis of lead oxide (PbO) layers for direct conversion X-ray detection. IEEE Trans Nucl Sci 52:2035–2040. https://doi.org/10.1109/TNS.2005.856790

    Article  CAS  Google Scholar 

  20. Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang HH, Wang C, Ecker BR, Gao Y, Loi MA, Cao L, Huang J (2016) Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics 10:333–339. https://doi.org/10.1038/nphoton.2016.41

    Article  CAS  Google Scholar 

  21. Hecht K (1932) Zum Mechanismus des lichtelektrischen Primärstromes in isolierenden Kristallen. Zeitschrift Für Phys 77:235–245. https://doi.org/10.1007/BF01338917

    Article  CAS  Google Scholar 

  22. Lee J, Flitsiyan E, Chernyak L, Yang J, Ren F, Pearton SJ, Meyler B, Salzman YJ (2018) Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length. Appl Phys Lett 112:082104. https://doi.org/10.1063/1.5011971

    Article  CAS  Google Scholar 

  23. Modak S, Chernyak L, Khodorov S, Lubomirsky I, Yang J, Ren F, Pearton SJ (2019) Impact of electron injection and temperature on minority carrier transport in alpha-irradiated β-Ga2O3 Schottky rectifiers. ECS J Solid State Sci Technol 8:Q3050–Q3053. https://doi.org/10.1149/2.0101907jss

    Article  CAS  Google Scholar 

  24. Yakimov EB, Polyakov AY, Smirnov NB, Shchemerov IV, Yang J, Ren F, Yang G, Kim J, Pearton SJ (2018) Diffusion length of non-equilibrium minority charge carriers in β-Ga2O3 measured by electron beam induced current. J Appl Phys 123:185704. https://doi.org/10.1063/1.5027559

    Article  CAS  Google Scholar 

  25. Yang J, Ren F, Pearton SJ, Yang G, Kim J, Kuramata A (2017) 1.5 MeV electron irradiation damage in β-Ga2O3 vertical rectifiers. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 35:031208. https://doi.org/10.1116/1.4983377

    Article  CAS  Google Scholar 

  26. Yao C, Fu K, Wang G, Yu G, Lu M (2012) GaN-based p-i-n X-ray detection. Phys Status Solidi 209:204–206. https://doi.org/10.1002/pssa.201127446

    Article  CAS  Google Scholar 

  27. Zhou L, Lu X, Wu J, Jiang H, Chen L, Ouyang X, Lau KM (2019) Self-powered fast-response X-Ray detectors based on vertical GaN p-n Diodes. IEEE Electron Device Lett 40:1044–1047. https://doi.org/10.1109/LED.2019.2914585

    Article  CAS  Google Scholar 

  28. Fu K, Yu G, Yao C, Wang G, Lu M, Zhang G (2011) X-ray detectors based on Fe doped GaN photoconductors. Phys Status Solidi Rapid Res Lett 5:187–189. https://doi.org/10.1002/pssr.201105163

    Article  CAS  Google Scholar 

  29. He Y, Zhao X, Wang X, Chen L, Peng W, Ouyang X (2015) Characterizations of an X-ray detector based on a Zn2 SiO4 film. Sens Actuators A 236:98–103. https://doi.org/10.1016/j.sna.2015.08.022

    Article  CAS  Google Scholar 

  30. Zhou L, Guo S, Zhao X, He Y, Chen L, Ouyang X (2019) X-ray detector based on p+-Si/n-Zn2SiO4 heterojunction diode. IEEE Photonics Technol Lett 31:1596–1599. https://doi.org/10.1109/LPT.2019.2939054

    Article  CAS  Google Scholar 

  31. Liang H-L, Cui S-J, Huo W-X, Wang T, Zhang Y-H, Quan B-G, Du X-L, Mei Z-X (2019) Direct ZnO x-ray detector with tunable sensitivity *. Chin Phys Lett 36:110701. https://doi.org/10.1088/0256-307X/36/11/110701

    Article  CAS  Google Scholar 

  32. Zhou L, Huang Z, Zhao X, He Y, Chen L, Xu M, Zhao K, Zhang S, Ouyang X (2019) A high-resistivity ZnO film-based photoconductive X-ray detector. IEEE Photonics Technol Lett 31:365–368. https://doi.org/10.1109/LPT.2019.2894296

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would thank the support from the U.S. Nuclear Regulatory Commission (NRC). This work was performed in part at the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation (Award Number ECCS-1542015). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hany, I., Yang, G. & Chung, CC. Fast X-ray detectors based on bulk β-Ga2O3 (Fe). J Mater Sci 55, 9461–9469 (2020). https://doi.org/10.1007/s10853-020-04665-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04665-9

Navigation