Skip to main content

Advertisement

Log in

Active composites based on shape memory polymers: overview, fabrication methods, applications, and future prospects

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Shape memory polymers (SMPs) have received immense attention from materials research community thanks to their unrivaled properties such as high recoverable strains (up to 400%), low weight, tailorable properties, easy processing, and multiple activation methods. Researchers in both academia and industry have been proposing, experimenting, analyzing, and reporting on various aspects of these materials from synthesis to their applications. Such efforts have led to skyrocketing research output in terms of published papers, especially in the last half a decade. Despite the flourishing research, numerous challenges that hinder advanced applications still exist with the predominant one being the low mechanical properties. To circumvent these challenges, various types of reinforcements have been utilized, leading to significant enhancements and widened potential applications. This work presents an overview of the present research on active composites. Areas covered include the background of SMPs, reinforcements, fabrication techniques, stimulus methods, and applications. Our review is particularly unique in that we included discussions on the various fabrication techniques for SMP composites including their merits and demerits which, to the best of our knowledge, is the first review to include such discussion, thus making it a complete reference material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

(Adapted with permission from [75]. Copyright (2010) Royal Society of Chemistry)

Figure 4

(Adapted with permission from [42]. Copyright (2007) Royal Society of Chemistry)

Figure 5
Figure 6

(Adapted with permission from [60]. Copyright (2015) Elsevier)

Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

(Adapted with permission from [173]. Copyright (2013) Springer Nature)

Figure 13
Figure 14
Figure 15
Figure 16

Adapted with permission from [307]. Copyright (2018) Elsevier

Figure 17
Figure 18

(Adapted with permission from [316]. Copyright (2019) Elsevier)

Figure 19

(Adapted with permission from [202]. Copyright (2014) American Chemical Society)

Figure 20

(Adapted with permission from [355]. Copyright (2018) Springer Nature)

Figure 21

(Reprinted with permission from [373]. Copyright (2010) Royal Society of Chemistry)

Figure 22

(Adapted with permission from [33]. Copyright (2014) Royal Society of Chemistry)

Figure 23
Figure 24

(Reprinted with permission from [393]. Copyright (2014) Elsevier)

Figure 25

(Adapted with permission from [394]. Copyright (2018) Elsevier)

Figure 26

Reprinted with permission from [397]. Copyright (2015) Emerald Publishing Limited

Figure 27

(Adapted with permission from [400]. Copyright (2018) Elsevier)

Figure 28
Figure 29

(Adapted with permission from [404]. Copyright (2018) John Wiley and Sons)

Figure 30
Figure 31

(Adapted with permission from [408]. Copyright (2013) John Wiley and Sons)

Figure 32
Figure 33

(Reprinted with permission from [418]. Copyright (2017) Royal Society of Chemistry)

Figure 34
Figure 35

(Adapted with permission from [427]. Copyright (2016) Elsevier)

Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42

(Reprinted with permission from [472]. Copyright (2018) John Wiley and Sons)

Figure 43
Figure 44

(Adapted with permission from [478]. Copyright (2018) Elsevier)

Figure 45

Similar content being viewed by others

References

  1. (2018, December) The emerging future. http://www.theemergingfuture.com/organizational-development.htm. Accessed 15 Jun 2019

  2. Huang WM et al (2010) Shape memory materials. Mater Today 13(7–8):54–61

    Article  CAS  Google Scholar 

  3. Sun L et al (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640

    Article  CAS  Google Scholar 

  4. Pilate F, Toncheva A, Dubois P, Raquez J-M (2016) Shape-memory polymers for multiple applications in the materials world. Eur Polym J 80:268–294

    Article  CAS  Google Scholar 

  5. Miaudet P et al (2007) Shape and temperature memory of nanocomposites with broadened glass transition. Science 318(5854):1294–1296

    Article  CAS  Google Scholar 

  6. Fejos M, Romhany G, Karger-Kocsis J (2012) Shape memory characteristics of woven glass fibre fabric reinforced epoxy composite in flexure. J Reinf Plast Compos 31(22):1532–1537

    Article  CAS  Google Scholar 

  7. Gao J et al (2019) Effect of temperature on the mechanical behaviours of a single-ply weave-reinforced shape memory polymer composite. Compos B Eng 159:336–345

    Article  CAS  Google Scholar 

  8. Tao R, Yang Q-S, He X-Q, Liew K-M (2016) Parametric analysis and temperature effect of deployable hinged shells using shape memory polymers. Smart Mater Struct 25:115034

    Article  CAS  Google Scholar 

  9. Castro F et al (2011) Time and temperature dependent recovery of epoxy-based shape memory polymers. J Eng Mater Technol 133(2):021025

    Article  CAS  Google Scholar 

  10. Mailen RW, Dickey MD, Genzer J, Zikry M (2017) Effects of thermo-mechanical behavior and hinge geometry on folding response of shape memory polymer sheets. J Appl Phys 122:195103

    Article  CAS  Google Scholar 

  11. Qiao T et al (2017) Strength property analysis for fiber-reinforced shape memory polymer composite laminate. J Intell Mater Syst Struct 28(12):1627–1639

    Article  CAS  Google Scholar 

  12. Staszczak M, Pieczyska EA, Maj M, Kukla D, Tobushi H (2016) Infrared thermographic analysis of shape memory polymer during cyclic loading. Meas Sci Technol 27:124007

    Article  CAS  Google Scholar 

  13. Wang G et al (2017) Degradation and recovery of graphene/polymer interfaces under cyclic mechanical loading. Compos Sci Technol 149:220–227

    Article  CAS  Google Scholar 

  14. Yu K et al (2016) Cyclic behaviors of amorphous shape memory polymers. Soft Matter 12(13):3234–3245

    Article  CAS  Google Scholar 

  15. Pieczyska EA et al (2017) Experimental and numerical investigation of yielding phenomena in a shape memory polymer subjected to cyclic tension at various strain rates. Polym Test 60:333–342

    Article  CAS  Google Scholar 

  16. Ahmad M, Singh D, Fu YQ, Miraftab M, Luo JK (2011) Stability and deterioration of a shape memory polymer fabric composite under thermomechanical stress. Polym Degrad Stab 96:1470–1477

    Article  CAS  Google Scholar 

  17. McClung AJW, Tandon GP, Baur JW (2012) Strain rate- and temperature-dependent tensile properties of an epoxy-based, thermosetting, shape memory polymer (Veriflex-E). Mech Time-Depend Mater 16:205–221

    Article  CAS  Google Scholar 

  18. Guo X, Liu L, Zhou B, Liu Y, Leng J (2015) Influence of strain rates on the mechanical behaviors of shape memory polymer. Smart Mater Struct 24(095009):8

    Google Scholar 

  19. Wang A, Li G, Meng H (2013) Strain rate effect on the thermomechanical behavior of a thermoset shape memory polymer. Smart Mater Struct 22:085033

    Article  CAS  Google Scholar 

  20. Pieczyska EA et al (2016) Investigation of thermomechanical couplings, strain localization and shape memory properties in a shape memory polymer subjected to loading at various strain rates. Smart Mater Struct 25:085002

    Article  CAS  Google Scholar 

  21. Yang B, Huang WM, Li C, Li L (2006) Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 47:1348–1356

    Article  CAS  Google Scholar 

  22. Yu Y-J, Yu Y-J, Wilson TS, Maitland DJ (2011) The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams. Smart Mater Struct 20(8):085010

    Article  CAS  Google Scholar 

  23. Ghobadi E et al (2018) The influence of water and solvent uptake on functional properties of shape-memory polymers. Int J Polym Sci. https://doi.org/10.1155/2018/7819353

    Article  Google Scholar 

  24. Ghobadi E, Elsayed M, Krause-Rehberg R, Steeb H (2018) Demonstrating the influence of physical aging on the functional properties of shape-memory polymers. Polymers 10(2):107

    Article  CAS  Google Scholar 

  25. Santiago D, Ferrando F, De la Flor S (2014) Influence of holding time on shape recovery in a polyurethane shape-memory polymer. J Mater Eng Perform 23(7):2567–2573

    Article  CAS  Google Scholar 

  26. Leng J, Xie F, Xuelian W, Liu Y (2014) Effect of the g-radiation on the properties of epoxy-based shape memory polymers. J Intell Mater Syst Struct 25(10):1256–1263

    Article  CAS  Google Scholar 

  27. Gao H, Xie F, Liu Y, Leng J (2018) Effects of g-radiation on the performances of optically transparent shape memory polyimides with a low glass transition temperature. Polym Degrad Stab 156:245–251

    Article  CAS  Google Scholar 

  28. Li W, Liu Y, Leng J (2018) Light-actuated reversible shape memory effect of a polymer composite. Compos A 110:70–75

    Article  CAS  Google Scholar 

  29. Yao Y et al (2016) ‘Two way’ shape memory composites based on electroactive polymer and thermoplastic membrane. Compos Part A 90:502–509

    Article  CAS  Google Scholar 

  30. Imai S, Sakurai K (2013) An actuator of two-way behavior by using two kinds of shape memory polymers with different TGS. Precis Eng 37:572–579

    Article  Google Scholar 

  31. Chen S, Jinlian H, Zhuo H, Zhu Y (2008) Two-way shape memory effect in polymer laminates. Mater Lett 62:4088–4090

    Article  CAS  Google Scholar 

  32. Zhang J, Jiang G, Huang T (2018) Synthesis and analysis of two-way-reversible shape-memory polymers. Funct Mater Lett 11(3):1850047

    Article  CAS  Google Scholar 

  33. Li W, Liu Y, Leng J (2014) Shape memory polymer nanocomposite with multi-stimuli response and two-way reversible shape memory behavior. RSC Adv 4(106):61847–61854

    Article  CAS  Google Scholar 

  34. Pilate F et al (2014) Design of multistimuli-responsive shape-memory polymer materials by reactive extrusion. Chem Mater 26:5860–5867

    Article  CAS  Google Scholar 

  35. Wang Z et al (2014) Dually actuated triple shape memory polymers of cross-linked polycyclooctene–carbon nanotube/polyethylene nanocomposites. ACS Appl Mater Interfaces 6:20051–20059

    Article  CAS  Google Scholar 

  36. Bai Y, Zhang X, Wang Q, Wang T (2014) A tough shape memory polymer with triple-shape memory and two-way shape memory properties. J Mater Chem A 2:4771–4778

    Article  CAS  Google Scholar 

  37. Kuang X, Liu G, Dong X, Wang D (2016) Triple-shape memory epoxy based on Diels–Alder adduct molecular switch. Polymer 84:1–9

    Article  CAS  Google Scholar 

  38. Zhuo S et al (2016) Multiple shape memory polymers for self-deployable device. RSC Adv 6:50581–50586

    Article  CAS  Google Scholar 

  39. Li X, Pan Y, Zheng Z, Ding X (2018) A facile and general approach to recoverable high-strain multishape shape memory polymers. Macromol Rapid Commun 39:1700613

    Article  CAS  Google Scholar 

  40. Fu X et al (2017) Thermoplastic shape memory polymers with tailor-made trigger temperature. Eur Polym J 93:307–313

    Article  CAS  Google Scholar 

  41. Ranganatha Swamy MK, Mallikarjun US, Udayakumar V (2017) Shape memory polymers synthesised for controllable switching temperatures. Mater Today: Proc 4:11148–11153

    Google Scholar 

  42. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558

    Article  CAS  Google Scholar 

  43. Patel KK, Purohit R (2018) Future prospects of shape memory polymer nano-composite and epoxy based shape memory polymer—a review. Mater Today: Proc 5:20193–20200

    Google Scholar 

  44. Liu T et al (2017) Stimulus methods of multi-functional shape memory polymer nanocomposites: a review. Compos Part A 100:20–30

    Article  CAS  Google Scholar 

  45. Wang W, Liu Y, Leng J (2016) Recent developments in shape memory polymer nanocomposites: actuation methods and mechanisms. Coord Chem Rev 320–321:38–52

    Article  CAS  Google Scholar 

  46. Lu H, Yao Y, Lin L (2014) Carbon-based reinforcement in shape-memory polymer composite for electrical actuation. Pigm Resin Technol 43(1):26–34

    Article  CAS  Google Scholar 

  47. Hearon K et al (2013) Porous shape-memory polymers. Polym Rev 53(1):41–75

    Article  CAS  Google Scholar 

  48. Wang K, Strandman S, Zhu XX (2017) A mini review: shape memory polymers for biomedical applications. Front Chem Sci Eng 11(2):143–153

    Article  Google Scholar 

  49. Serrano MC, Ameer GA (2012) Recent insights into the biomedical applications of shape-memory polymers. Macromol Biosci 12:1156–1171

    Article  CAS  Google Scholar 

  50. Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269. https://doi.org/10.1007/s10853-007-2176-7

    Article  CAS  Google Scholar 

  51. Renata C, Huang WM, He LW, Yang JJ (2017) Shape change/memory actuators based on shape memory materials. J Mech Sci Technol 31(10):4863–4873

    Article  Google Scholar 

  52. Li J, Duan Q, Zhang E, Wang J (2018) Applications of shape memory polymers in kinetic buildings. Adv Mater Sci Eng. https://doi.org/10.1155/2018/7453698

    Article  Google Scholar 

  53. Wagermaier W, Kratz K, Heuchel M, Lendlein A (2010) Characterization methods for shape-memory polymers. Adv Polym Sci 226:97–145

    Article  CAS  Google Scholar 

  54. Thakur S (2017) Shape memory polymers for smart textile applications. In: Kumar B, Thakur S (eds) Textiles for advanced applications. IntechOpen, London

    Google Scholar 

  55. Berg GJ, McBride MK, Wang C, Bowman CN (2014) New directions in the chemistry of shape memory polymers. Polymer 55:5849–5872

    Article  CAS  Google Scholar 

  56. Govindarajan T, Shandas R (2014) A survey of surface modification techniques for next-generation shape memory polymer stent devices. Polymers 6:2309–2331

    Article  CAS  Google Scholar 

  57. Zhang Q, Yang Q-S (2012) Recent advance on constitutive models of thermal-sensitive shape memory polymers. J Appl Polym Sci 123(3):1502–1508

    Article  CAS  Google Scholar 

  58. Xie T (2011) Recent advances in polymer shape memory. Polymer 52:4985–5000

    Article  CAS  Google Scholar 

  59. Madbouly SA, Lendlein A (2010) Shape-memory polymer composites. Adv Polym Sci 226:41–95

    Article  CAS  Google Scholar 

  60. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: Past, present and future developments. Prog Polym Sci 49–50:3–33

    Article  CAS  Google Scholar 

  61. Mu T, Liu L, Lan X, Liu Y, Leng J (2018) Shape memory polymers for composites. Compos Sci Technol 160:169–198

    Article  CAS  Google Scholar 

  62. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199–2221

    Article  CAS  Google Scholar 

  63. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135

    Article  CAS  Google Scholar 

  64. Safranski DL (2017) Introduction to shape-memory polymers. In: Andrew W (ed) Shape-memory polymer device design. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-323-37797-3.00001-4

    Chapter  Google Scholar 

  65. Leng J, Du S (eds) (2010) Shape-memory polymers and multifunctional composites, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  66. Hu J (2013) Advances in shape memory polymers. Woodhead Publishing, Sawston

    Book  Google Scholar 

  67. Vernon LB, Vernon HM (1941) Producing molded articles such as dentures from thermoplastic synthetic resins, 2234993

  68. Rainer WC, Redding EM, Hitov JJ, Sloan AW, Stewart WD (1964) Heat-shrinkable polyethylene, 3144398

  69. Wray PE (1967) Elastic memory articles, GB1075704

  70. Perrone RJ (1967) Heat-shrinkable articles made from silicone, 3326869

  71. Arditti SJ, Avedikian SZ, Bernstein BS (1971) Articles with polymeric memory, 3563973

  72. Leng J, Lu H, Liu Y, Huang WM (2009) Shape-memory polymers—a class of novel smart materials. MRS Bull 34(11):848–855

    Article  Google Scholar 

  73. Gall K, Mikulas M, Munshi NA, Beavers F, Tupper M (2000) Carbon fiber reinforced shape memory polymer composites. J Intell Mater Syst Struct 11(11):877–886

    Article  CAS  Google Scholar 

  74. Thakur S, Hu J (2017) Polyurethane: a shape memory polymer (SMP). In: Yılmaz F (ed) Aspects of polyurethanes. IntechOpen, London, pp 54–71

    Google Scholar 

  75. Jinlian H, Chen S (2010) A review of actively moving polymers in textile applications. J Mater Chem 20(17):3346–3355

    Article  CAS  Google Scholar 

  76. Suchao-in K, Chirachanchai S (2013) “Grafting to” as a novel and simple approach for triple-shape memory polymers. ACS Appl Mater Interfaces 5:6850–6853

    Article  CAS  Google Scholar 

  77. Xie F, Huang L, Leng J, Liu Y (2016) Thermoset shape memory polymers and their composites. J Intell Mater Syst Struct 27(18):2433–2455

    Article  CAS  Google Scholar 

  78. Lehn J-M (2006) Supramolecular chemistry: concepts and perspectives. VCH Verlagsgesellschaft mbH, Hoboken. https://doi.org/10.1002/3527607439

    Book  Google Scholar 

  79. Jinlian H, Zhu Y, Huang H, Jing L (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763

    Article  CAS  Google Scholar 

  80. Wu Y et al (2015) A facile approach to fabricate a UV/heat dual-responsive triple shape memory polymer. J Mater Chem A 3:97–100

    Article  CAS  Google Scholar 

  81. Kumpfer JR, Rowan SJ (2011) Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J Am Chem Soc 133:12866–12874

    Article  CAS  Google Scholar 

  82. Zhang J et al (2018) Shape memory and self-healing materials from supramolecular block polymers. Polymer 134:35–43

    Article  CAS  Google Scholar 

  83. Chen Y, Sun S, Dou L, Shi Y, Yao Y (2019) Water-soluble supramolecular polymers constructed by macrocycle-based host-guest interactions. Chin Chem Lett 30(1):37–43

    Article  CAS  Google Scholar 

  84. Chatterjee T, Dey P, Nando GB, Naskar K (2015) Thermo-responsive shape memory polymer blends based on alpha olefin and ethylene propylene diene rubber. Polymer 78:180–192

    Article  CAS  Google Scholar 

  85. Arnebold A, Hartwig A (2016) Fast switchable, epoxy based shape-memory polymers with high strength and toughness. Polymer 83:40–49

    Article  CAS  Google Scholar 

  86. Jing X, Mi H-Y, Huang H-X, Turng L-S (2016) Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures. J Mech Behav Biomed Mater 64:94–103

    Article  CAS  Google Scholar 

  87. Memarian F, Fereidoon A, Ahangari MG (2016) The shape memory, and the mechanical and thermal properties of TPU/ABS/CNT: a ternary polymer composite. RSC Adv 6(103):101038–101047

    Article  CAS  Google Scholar 

  88. Martins GS, Pereira IM, Orefice RL (2018) Toughening brittle polymers with shape memory polymers. Polymer 135:30–38

    Article  CAS  Google Scholar 

  89. Samuel C, Barrau S, Lefebvre J-M, Raquez J-M, Dubois P (2014) Designing multiple-shape memory polymers with miscible polymer blends: evidence and origins of a triple-shape memory effect for miscible PLLA/PMMA blends. Macromolecules 47:6791–6803

    Article  CAS  Google Scholar 

  90. Kashif M, Chang Y-W (2015) Triple-shape memory effects of modified semicrystalline ethylene–propylene–diene rubber/poly(ε-caprolactone) blends. Eur Polym J 70:306–316

    Article  CAS  Google Scholar 

  91. Molavi FK, Ghasemi I, Messori M, Esfandeh M (2017) Nanocomposites based on poly(l-lactide)/poly(ε-caprolactone) blends with triple-shape memory behavior: Effect of the incorporation of graphene nanoplatelets (GNps). Compos Sci Technol 151:219–227

    Article  CAS  Google Scholar 

  92. Liu W et al (2016) Design and structural study of a triple-shape memory PCL/PVC blend. Polymer 104:115–122

    Article  CAS  Google Scholar 

  93. Du J et al (2017) Dual-responsive triple-shape memory polyolefin elastomer/stearic acid composite. Polymer 126:206–210

    Article  CAS  Google Scholar 

  94. Babaahmadi M, Sabzi M, Mahdavinia GR, Keramati M (2017) Preparation of amorphous nanocomposites with quick heat triggered shape memory behavior. Polymer 112:26–34

    Article  CAS  Google Scholar 

  95. Peponi L et al (2018) Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polym Degrad Stab 151:36–51

    Article  CAS  Google Scholar 

  96. Karger-Kocsis J, Kéki S (2018) Review of progress in shape memory epoxies and their composites. Polymers 10(1):34–72

    Article  CAS  Google Scholar 

  97. Shi Y, Chen Z (2018) Function-driven design of stimuli-responsive polymer composites: recent progress and challenges. J Mater Chem C. https://doi.org/10.1039/c8tc02980f

    Article  Google Scholar 

  98. Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23

    Article  CAS  Google Scholar 

  99. Athimoolam M, Moorthy TV (2012) Polymer nanocomposite materials and shape memory applications—a review. Procedia Eng 38:3399–3408

    Article  CAS  Google Scholar 

  100. Wang K, Zhu XX (2018) Two-way reversible shape memory polymers containing polydopamine nanospheres: light actuation, robotic locomotion, and artificial muscles. ACS Biomater Sci Eng 4(8):3099–3106

    Article  CAS  Google Scholar 

  101. Zhao Q, Behl M, Lendlein A (2013) Shape-memory polymers with multiple transitions: complex actively moving polymers. Soft Matter 9(6):1744–1755

    Article  CAS  Google Scholar 

  102. Hosford WF (2010) Solid mechanics. Cambridge University Press, New York

    Book  Google Scholar 

  103. Tobushi H, Hashimoto T, Hayashi S, Yamada E (1997) Thermomechanical constitutive modeling in shape memory polymer of polyurethane series. J Intell Mater Syst Struct 8(8):711–718

    Article  CAS  Google Scholar 

  104. Tobushi H, Hara H, Yamada E, Hayashi S (1996) Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Mater Struct 5:483–491

    Article  CAS  Google Scholar 

  105. Nguyen TD (2013) Modeling shape-memory behavior of polymers. Polym Rev 53(1):130–152

    Article  CAS  Google Scholar 

  106. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120

    Article  CAS  Google Scholar 

  107. Tobushi H, Okumura K, Hayashi S, Ito N (2001) Thermomechanical constitutive model for shape memory polymer. Mech Mater 33:545–554

    Article  Google Scholar 

  108. Diani J, Liu Y, Gall K (2006) Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers. Polym Eng Sci 46(4):486–492

    Article  CAS  Google Scholar 

  109. Nguyen TD, Qi HJ, Castro F, Long KN (2008) A thermoviscoelastic model for amorphous shape memory polymers: Incorporating structural and stress relaxation. J Mech Phys Solids 56:2792–2814

    Article  CAS  Google Scholar 

  110. Castro F, Westbrook KK, Long KN, Shandas R, Qi HJ (2010) Effects of thermal rates on the thermomechanical behaviors of amorphous shape memory polymers. Mech Time-Depend Mater 14:219–241

    Article  Google Scholar 

  111. Xiao R et al (2013) Modeling the glass transition of amorphous networks for shape-memory behavior. J Mech Phys Solids 61:1612–1635

    Article  Google Scholar 

  112. Liu Y, Gall K, Dunn ML, Greenberg AR, Diani J (2006) Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling. Int J Plast 22:279–313

    Article  CAS  Google Scholar 

  113. Chen Y-C, Lagoudas DC (2008) A constitutive theory for shape memory polymers. Part I Large deformations. J Mech Phys Solids 56:1752–1765

    Article  CAS  Google Scholar 

  114. Chen Y-C, Lagoudas DC (2008) A constitutive theory for shape memory polymers. Part II A linearized model for small deformations. J Mech Phys Solids 56:1766–1778

    Article  CAS  Google Scholar 

  115. Qi HJ, Nguyen TD, Castro F, Yakacki CM, Shandas R (2008) Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers. J Mech Phys Solids 56:1730–1751

    Article  CAS  Google Scholar 

  116. Reese S, Böl M, Christ D (2010) Finite element-based multi-phase modelling of shape memory polymer stents. Comput Methods Appl Mech Eng 199:1276–1286

    Article  Google Scholar 

  117. Baghani M, Naghdabadi R, Arghavani J, Sohrabpour S (2012) A thermodynamically-consistent 3D constitutive model for shape memory polymers. Int J Plast 35:13–30

    Article  CAS  Google Scholar 

  118. Gilormini P, Diani J (2012) On modeling shape memory polymers as thermoelastic two-phase composite materials. CR Mec 340:338–348

    Article  CAS  Google Scholar 

  119. Boatti E, Scalet G, Auricchio F (2016) A three-dimensional finite-strain phenomenological model for shape-memory polymers: formulation, numerical simulations, and comparison with experimental data. Int J Plast 83:153–177

    Article  CAS  Google Scholar 

  120. Taherzadeh M, Baghani M, Baniassadi M, Abrinia K, Safdari M (2016) Modeling and homogenization of shape memory polymer nanocomposites. Compos B 91:36–43

    Article  CAS  Google Scholar 

  121. Alexander S, Xiao R, Nguyen TD (2014) Modeling the thermoviscoelastic properties and recovery behavior of shape memory polymer composites. J Appl Mech 81(4):041003

    Article  Google Scholar 

  122. Tan Q, Liu L, Liu Y, Leng J (2014) Thermal mechanical constitutive model of fiber reinforced shape memory polymer composite: based on bridging model. Compos Part A 64:132–138

    Article  CAS  Google Scholar 

  123. Xiao R, Yakacki CM, Guo J, Frick CP, Nguyen TD (2016) A predictive parameter for the shape memory behavior of thermoplastic polymers. J Polym Sci Part B: Polym Phys 54(14):1405–1414

    Article  CAS  Google Scholar 

  124. Lu H, Leng J, Du S (2013) A phenomenological approach for the chemo-responsive shape memory effect in amorphous polymers. Soft Matter 9(14):3851–3858

    Article  CAS  Google Scholar 

  125. Lu H, Huang WM (2013) A phenomenological model for the chemo-responsive shape memory effect in amorphous polymers undergoing viscoelastic transition. Smart Mater Struct 22:115019

    Article  CAS  Google Scholar 

  126. Heuchel M, Razzaq MY, Kratz K, Behl M, Lendlein A (2015) Modeling the heat transfer in magneto-sensitive shape-memory polymer nanocomposites with dynamically changing surface area to volume ratios. Polymer 65:215–222

    Article  CAS  Google Scholar 

  127. Zare Y (2014) Determination of polymer–nanoparticles interfacial adhesion and its role in shape memory behavior of shape memory polymer nanocomposites. Int J Adhes Adhes 54:67–71

    Article  CAS  Google Scholar 

  128. Zeng H, Leng J, Leng J, Sun H (2018) A thermoviscoelastic model incorporated with uncoupled structural and stress relaxation mechanisms for amorphous shape memory polymers. Mech Mater 124:18–25

    Article  Google Scholar 

  129. Shen H, Xu Y, Liang F, Gou J, Mabbott B (2013) Recovery torque modeling of carbon fiber reinforced shape memory polymer nanocomposites. Appl Phys Lett 103:201903

    Article  CAS  Google Scholar 

  130. Li Y, Liu Z (2018) A novel constitutive model of shape memory polymers combining phase transition and viscoelasticity. Polymer 143:298–308

    Article  CAS  Google Scholar 

  131. Li Y, He Y, Liu Z (2017) A viscoelastic constitutive model for shape memory polymers based on multiplicative decompositions of the deformation gradient. Int J Plast 91:300–317

    Article  Google Scholar 

  132. Li Y, Hu J, Liu Z (2017) A constitutive model of shape memory polymers based on glass transition and the concept of frozen strain release rate. Int J Solids Struct 124:252–263

    Article  CAS  Google Scholar 

  133. Su X, Peng X (2018) A 3D finite strain viscoelastic constitutive model for thermally induced shape memory polymers based on energy decomposition. Int J Plast 110:166–182

    Article  CAS  Google Scholar 

  134. Pan Z, Liu Z (2018) A novel fractional viscoelastic constitutive model for shape memory polymers. J Polym Sci Part B: Polym Phys 56(16):1125–1134

    Article  CAS  Google Scholar 

  135. Park H, Harrison P, Guo Z, Lee M-G, Yu W-R (2016) Three-dimensional constitutive model for shape memory polymers using multiplicative decomposition of the deformation gradient and shape memory strains. Mech Mater 93:43–62

    Article  Google Scholar 

  136. Diani J, Gilormini P, Frédy C, Rousseau I (2012) Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. Int J Solids Struct 49:793–799

    Article  Google Scholar 

  137. Yu K, McClung AJW, Tandon GP, Baur JW, Qi HJ (2014) A thermomechanical constitutive model for an epoxy based shape memory polymer and its parameter identifications. Mech Time-Depend Mater 18:453–474

    Article  CAS  Google Scholar 

  138. Srivastava V, Chester SA, Anand L (2010) Thermally actuated shape-memory polymers: Experiments, theory, and numerical simulations. J Mech Phys Solids 58(8):1100–1124

    Article  CAS  Google Scholar 

  139. Kuilla T et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  140. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  141. Li Y et al (2019) A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J Mater Sci 54(2):1036–1076. https://doi.org/10.1007/s10853-018-3006-9

    Article  CAS  Google Scholar 

  142. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  143. Moses JC, Gangrade A, Mandal BB (2019) Carbon nanotubes and their polymer nanocomposites. In: Karak N (ed) Nanomaterials and polymer nanocomposites. Elsevier, Amsterdam, pp 145–175

    Chapter  Google Scholar 

  144. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A: Appl Sci Manuf 41(10):1345–1367

    Article  CAS  Google Scholar 

  145. Batmunkh M, Shearer CJ, Bat-Erdene M, Biggs MJ, Shapter JG (2017) Single-walled carbon nanotubes enhance the efficiency and stability of mesoscopic perovskite solar cells. ACS Appl Mater Interfaces 9(23):19945–19954

    Article  CAS  Google Scholar 

  146. Budhathoki-Uprety J, Langenbacher RE, Jena PV, Roxbury D, Heller DA (2017) A carbon nanotube optical sensor reports nuclear entry via a noncanonical pathway. ACS Nano 11:3875–3882

    Article  CAS  Google Scholar 

  147. Ni Q-Q, Zhang C, Fu Y, Dai G, Kimura T (2007) Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos Struct 81:176–184

    Article  Google Scholar 

  148. Du F-P et al (2015) Electroactive shape memory polymer based on optimized multi-walled carbon nanotubes/polyvinyl alcohol nanocomposites. Compos: Part B 68:170–175

    Article  CAS  Google Scholar 

  149. Bai Y, Zhang Y, Wang Q, Wang T (2013) Shape memory properties of multi-walled carbon nanotube/polyurethane composites prepared by in situ polymerization. J Mater Sci 48:2207–2214. https://doi.org/10.1007/s10853-012-6996-8

    Article  CAS  Google Scholar 

  150. Fonseca MA et al (2013) Shape memory polyurethanes reinforced with carbon nanotubes. Compos Struct 99:105–111

    Article  Google Scholar 

  151. Singh V et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  CAS  Google Scholar 

  152. Kairi MI, Khavarian M, Bakar SA, Vigolo B, Mohamed AR (2018) Recent trends in graphene materials synthesized by CVD with various carbon precursors. J Mater Sci 53(2):851–879. https://doi.org/10.1007/s10853-017-1694-1

    Article  CAS  Google Scholar 

  153. Novoselov KS et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  154. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127

    Article  CAS  Google Scholar 

  155. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic. Science 321:385–388

    Article  CAS  Google Scholar 

  156. Balandin AA et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  157. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport. Nat Nanotechnol 3:491–495

    Article  CAS  Google Scholar 

  158. Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972

    Article  CAS  Google Scholar 

  159. Romero UAM, Soto MÁV, Jiménez LL, Quintana JÁ, García SAP (2017) Graphene derivatives: controlled properties, nanocomposites, and energy harvesting applications. In: Kyzas GZ, Mitropoulos AC (eds) Graphene materials—structure, properties and modifications. InTechOpen, London

    Google Scholar 

  160. Hammers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  Google Scholar 

  161. Kausar A (2017) Emerging research trends in polyurethane/graphene nanocomposite: a review. Polym-Plast Technol Eng 56(13):1468–1486

    Article  CAS  Google Scholar 

  162. Kausar A, Rahman AU (2016) Effect of graphene nanoplatelet addition on properties of thermo-responsive shape memory polyurethane-based nanocomposite. Fullerenes Nanotubes Carbon Nanostruct 24(4):235–242

    Article  CAS  Google Scholar 

  163. Patel KK, Purohit R (2019) Improved shape memory and mechanical properties of microwave-induced thermoplastic polyurethane/graphene nanoplatelets composites. Sens Actuators A 285:17–24

    Article  CAS  Google Scholar 

  164. Li Y et al (2013) In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater Des 47:850–856

    Article  CAS  Google Scholar 

  165. Wang W, Liu D, Liu Y, Leng J, Bhattacharyya D (2015) Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites. Compos Sci Technol 106:20–24

    Article  CAS  Google Scholar 

  166. Kim JT et al (2015) Electroactive shape memory performance of polyurethane/graphene nanocomposites. React Funct Polym 88:1–7

    Article  CAS  Google Scholar 

  167. Kuila T et al (2011) Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon 49:1033–1051

    Article  CAS  Google Scholar 

  168. Du W et al (2018) Near-infrared light triggered shape memory and self-healable polyurethane/functionalized graphene oxide composites containing diselenide bonds. Polymer 158:120–129

    Article  CAS  Google Scholar 

  169. Gunes IS, Jimenez GA, Jana SC (2009) Carbonaceous fillers for shape memory actuation of polyurethane composites by resistive heating. Carbon 47:981–997

    Article  CAS  Google Scholar 

  170. Lu H, Liu J, Zhu S, Yang Y, Fu YQ (2015) Enhanced electro-activated performance of shape memory polymer nanocomposites with self-assembled carbon nanofibre template. Nanosci Nanotechnol Lett 7:94–99

    Article  Google Scholar 

  171. Lu H, Yao Y, Zhu S, Yang Y, Lin L (2015) Fabrication of free-standing octagon-shaped carbon nanofibre assembly for electrical actuation of shape memory polymer nanocomposites. Pigm Resin Technol 44(3):157–164

    Article  CAS  Google Scholar 

  172. Lu H, Liang F, Yao Y, Gou J, Hui D (2014) Self-assembled multi-layered carbon nanofiber nanopaper for significantly improving electrical actuation of shape memory polymer nanocomposite. Compos: Part B 59:191–195

    Article  CAS  Google Scholar 

  173. Kim YA, Hayashi T, Endo M, Dresselhaus MS (2013) Carbon nanofibers. In: Vajtai R (ed) Springer handbook of nanomaterials. Springer, Berlin, pp 233–262

    Chapter  Google Scholar 

  174. Rallini M, Kenny JM (2017) Nanofillers in polymers. In: Jasso-Gastinel CF, Kenny JM (eds) Modification of polymer properties. Elsevier, Amsterdam, pp 47–86

    Chapter  Google Scholar 

  175. Li F et al (2000) Polyurethane/conducting carbon black composites: structure, electric conductivity, strain recovery behavior, and their relationships. J Appl Polym Sci 75:68–77

    Article  CAS  Google Scholar 

  176. Chen S et al (2015) Electroactive two-way shape memory polymer laminates. Polym Compos 36:439–444

    Article  CAS  Google Scholar 

  177. Kai D et al (2016) Biocompatible electrically conductive nanofibers from inorganic–organic shape memory polymers. Colloids Surf B 148:557–565

    Article  CAS  Google Scholar 

  178. Khan F, Singh K (2016) An experimental investigation of the effect of strain on the electrical conductivity of a shape memory polymer. Polym Test 49:82–87

    Article  CAS  Google Scholar 

  179. Gall K et al (2002) Shape memory polymer nanocomposites. Acta Mater 50:5115–5126

    Article  CAS  Google Scholar 

  180. Gall K, Dunn ML, Liu Y (2004) Internal stress storage in shape memory polymer nanocomposites. Appl Phys Lett 85(2):290–292

    Article  CAS  Google Scholar 

  181. Liu Y, Gall K, Dunn ML, McCluskey P (2004) Thermomechanics of shape memory polymer nanocomposites. Mech Mater 36(10):929–940

    Article  Google Scholar 

  182. Likitaporn C, Mora P, Tiptipakorn S, Rimdusit S (2018) Recovery stress enhancement in shape memory composites from silicon carbide whisker–filled benzoxazine epoxy polymer alloy. J Intell Mater Syst Struct 29(3):388–396

    Article  CAS  Google Scholar 

  183. Ouyang T et al (2010) Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology 21(24):245701

    Article  CAS  Google Scholar 

  184. Li Z, Lu H, Yao Y, Lin L (2017) Thermomechanical performance and shape recovery behaviour of shape memory polymer nanocomposite incorporated with hexagonal boron nitride. Pigm Resin Technol 46(1):79–83

    Article  Google Scholar 

  185. Lu H, Yao Y, Huang WM, Leng J, Hui D (2014) Significantly improving infrared light-induced shape recovery behavior of shape memory polymeric nanocomposite via a synergistic effect of carbon nanotube and boron nitride. Compos: Part B 62:256–261

    Article  CAS  Google Scholar 

  186. Cho JW, Lee SH (2004) Influence of silica on shape memory effect and mechanical properties of polyurethane–silica hybrids. Eur Polym J 40:1343–1348

    Article  CAS  Google Scholar 

  187. Ponyrko S, Donato RK, Matejka L (2016) Tailored high performance shape memory epoxy–silica nanocomposites. Structure design. Polym Chemistry 7(3):560–572

    Article  CAS  Google Scholar 

  188. Bocsan IA et al (2012) Shape-memory polymers filled with SiO2 nanoparticles. Mater Technol 46(3):243–246

    CAS  Google Scholar 

  189. Sessini V, Brox D, López AJ, Ureña A, Peponi L (2018) Thermally activated shape memory behavior of copolymers based on ethylene reinforced with silica nanoparticles. Nanocomposites 4(2):19–35

    Article  CAS  Google Scholar 

  190. Lin T, Ma S, Lu Y, Guo B (2014) New design of shape memory polymers based on natural rubber crosslinked via oxa-Michael reaction. ACS Appl Mater Interfaces 6(8):5695–5703

    Article  CAS  Google Scholar 

  191. Mahmoodi MJ, Hassanzadeh-Aghdam MK, Ansari R (2019) Effects of added SiO2 nanoparticles on the thermal expansion behavior of shape memory polymer nanocomposites. J Intell Mater Syst Struct 30(1):32–44

    Article  CAS  Google Scholar 

  192. Kumar UN, Kratz K, Heuchel M, Behl M, Lendlei A (2011) Shape-memory nanocomposites with magnetically adjustable apparent switching temperatures. Adv Mater 23(36):4157–4162

    Article  CAS  Google Scholar 

  193. Kumar UN, Kratz K, Behl M, Lendlein A (2012) Shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments. Express Polym Lett 6(1):26–40

    Article  CAS  Google Scholar 

  194. Soto GD et al (2018) Nanocomposites with shape memory behavior based on a segmented polyurethane and magnetic nanostructures. Polym Testing 65:360–368

    Article  CAS  Google Scholar 

  195. Weidenfeller B, Anhalt M (2014) Polyurethane–magnetite composite shape-memory polymer: thermal properties. J Thermoplast Compos 27(7):895–908

    Article  CAS  Google Scholar 

  196. Vialle G et al (2009) Remote activation of nanomagnetite reinforced shape memory polymer foam. Smart Mater Struct 18:115014

    Article  CAS  Google Scholar 

  197. Wang Y, Ye J, Tian W (2016) Shape memory polymer composites of poly(styrene-b-butadiene-b-styrene) copolymer/liner low density polyethylene/Fe3O4 nanoparticles for remote activation. Appl Sci 6(11):333–342

    Article  CAS  Google Scholar 

  198. Leng J, Zhang D, Liu Y, Yu K, Lan X (2010) Study on the activation of styrene-based shape memory polymer by medium-infrared laser light. Appl Phys Lett 96:111905

    Article  CAS  Google Scholar 

  199. Maity S, Bochinski JR, Clarke LI (2012) Metal nanoparticles acting as light-activated heating elements within composite materials. Adv Funct Mater 22:5259–5270

    Article  CAS  Google Scholar 

  200. Hribar KC, Lee MH, Lee D, Burdick JA (2011) Enhanced release of small molecules from near-infrared light responsive polymer-nanorod composites. ACS Nano 5(4):2948–2956

    Article  CAS  Google Scholar 

  201. Zhang H, Zhang J, Tong X, Ma D, Zhao Y (2013) Light polarization-controlled shape-memory polymer/gold nanorod composite. Macromol Rapid Commun 34:1575–1579

    Article  CAS  Google Scholar 

  202. Zhang H, Xia H, Zhao Y (2014) Light-controlled complex deformation and motion of shape-memory polymers using a temperature gradient. ACS Macro Lett 3:940–943

    Article  CAS  Google Scholar 

  203. Zhang P et al (2017) Silver nanowires: synthesis technologies, growth mechanism and multifunctional applications. Mater Sci Eng B 223:1–23

    Article  CAS  Google Scholar 

  204. Fahad S et al (2019) Recent progress in the synthesis of silver nanowires and their role as conducting materials. J Mater Sci 54(2):997–1035. https://doi.org/10.1007/s10853-018-2994-9

    Article  CAS  Google Scholar 

  205. Luo H et al (2014) Electro-responsive silver nanowire-shape memory polymer composites. Mater Lett 134:172–175

    Article  CAS  Google Scholar 

  206. Zhou J et al (2017) Fabricating fast triggered electro-active shape memory graphite/silver nanowires/epoxy resin composite from polymer template. Sci Rep 7(1):5535

    Article  CAS  Google Scholar 

  207. Yu Z et al (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater 23:664–668

    Article  CAS  Google Scholar 

  208. Yu Z, Li L, Zhang Q, Hu W, Pei Q (2011) Silver nanowire-polymer composite electrodes for efficient polymer solar cells. Adv Mater 23:4453–4457

    Article  CAS  Google Scholar 

  209. Olalla AS, Sessini V, Torres EG, Peponi L (2016) Smart nanocellulose composites with shape-memory behavior. In: Puglia D, Fortunati E, Kenny JM (eds) Multifunctional polymeric nanocomposites based on cellulosic reinforcements. Elsevier, Amsterdam

    Google Scholar 

  210. George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54

    Article  CAS  Google Scholar 

  211. Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Characterization of nanocellulose reinforced shape memory polyurethanes. Polym Int 57:651–659

    Article  CAS  Google Scholar 

  212. Bitinis N et al (2013) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part I. Processing and morphology. Carbohyd Polym 96(2):611–620

    Article  CAS  Google Scholar 

  213. Mariano M et al (2017) Preparation of cellulose nanocrystal-reinforced poly(lactic acid) nanocomposites through noncovalent modification with PLLA-based surfactants. ACS Omega 2:2678–2688

    Article  CAS  Google Scholar 

  214. Rueda L et al (2013) Cellulose nanocrystals/polyurethane nanocomposites. Study from the viewpoint of microphase separated structure. Carbohyd Polym 92(1):751–757

    Article  CAS  Google Scholar 

  215. Jayaramudu T et al (2018) Electroactive hydrogels made with polyvinyl alcohol/cellulose nanocrystals. Materials 11(9):1615

    Article  CAS  Google Scholar 

  216. Wu T, Frydrych M, O’Kelly K, Chen B (2014) Poly(glycerol sebacate urethane)-cellulose nanocomposites with water-active shape-memory effects. Biomacromolecules 15:2663–2671

    Article  CAS  Google Scholar 

  217. Yao S-S, Jin F-L, Rhee KY, Hui D, Park S-J (2018) Recent advances in carbon-fiber-reinforced thermoplastic composites: a review. Compos Part B: Eng 142:241–250

    Article  CAS  Google Scholar 

  218. Zhang C-S, Ni Q-Q (2007) Bending behavior of shape memory polymer based laminates. Compos Struct 78:153–161

    Article  Google Scholar 

  219. Li F et al (2018) Bending shape recovery of unidirectional carbon fiber reinforced epoxy-based shape memory polymer composites. Compos Part A. https://doi.org/10.1016/j.compositesa.2018.10.037

    Article  Google Scholar 

  220. Ivens J, Urbanus M, De Smet C (2011) Shape recovery in a thermoset shape memory polymer and its fabric-reinforced composites. Express Polym Lett 5(3):254–261

    Article  CAS  Google Scholar 

  221. Wang Z, Liu J, Guo J, Sun X, Xu L (2017) The study of thermal, mechanical and shape memory properties of chopped carbon fiber-reinforced TPI shape memory polymer composites. Polymers 9:594

    Article  CAS  Google Scholar 

  222. Guo J et al (2015) Thermo-mechanical property of shape memory polymer/carbon fibre composites. Mater Res Innov 19(8):566–572

    Google Scholar 

  223. Guo J, Wang Z, Tong L, Lv H, Liang W (2015) Shape memory and thermo-mechanical properties of shape memory polymer/carbon fiber composites. Compos Part A 76:162–171

    Article  CAS  Google Scholar 

  224. Herath HMCM et al (2018) Structural performance and photothermal recovery of carbon fibre reinforced shape memory polymer. Compos Sci Technol 167:206–214

    Article  CAS  Google Scholar 

  225. Xie H et al (2018) Reinforcement of shape-memory poly(ethylene-co-vinyl acetate) by carbon fibre to access robust recovery capability under resistant condition. Compos Sci Technol 157:202–208

    Article  CAS  Google Scholar 

  226. Sathishkumar TP, Satheeshkumar S, Naveen J (2014) Glass fiber-reinforced polymer composites—a review. J Reinf Plast Compos 33(13):1258–1275

    Article  CAS  Google Scholar 

  227. Cuevas JM et al (2012) Shape memory composites based on glass-fibre-reinforced poly(ethylene)-like polymers. Smart Mater Struct 21:035004

    Article  CAS  Google Scholar 

  228. Ohki T, Ni Q-Q, Ohsako N, Iwamoto M (2004) Mechanical and shape memory behavior of composites with shape memory polymer. Compos Part A 35:1065–1073

    Article  CAS  Google Scholar 

  229. Rahman AA, Ikeda T, Senba A (2017) Memory effects performance of polyurethane shape memory polymer composites (SMPC) in the variation of fiber volume fractions. Fibers Polym 18(5):979–986

    Article  CAS  Google Scholar 

  230. Wei K et al (2013) An investigation on shape memory behaviours of hydro-epoxy/glass fibre composites. Compos: Part B 51:169–174

    Article  CAS  Google Scholar 

  231. AlAzzawi W, Epaarachchi JA, Leng J (2018) Investigation of ultraviolet radiation effects on thermomechanical properties and shape memory behaviour of styrene-based shape memory polymers and its composite. Compos Sci Technol 165:266–273

    Article  CAS  Google Scholar 

  232. Lei M, Xu B, Pei Y, Lu H, Fu YQ (2016) Micro-mechanics of nanostructured carbon/shape memory polymer hybrid thin film. Soft Matter 12(1):106–114

    Article  CAS  Google Scholar 

  233. Lu H, Liu Y, Gou J, Leng J, Du S (2010) Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite. Appl Phys Lett 96:084102

    Article  CAS  Google Scholar 

  234. Yi DH, Yoo HJ, Mahapatra SS, Kim YA, Cho JW (2014) The synergistic effect of the combined thin multi-walled carbon nanotubes and reduced graphene oxides on photothermally actuated shape memory polyurethane composites. J Colloid Interface Sci 432:128–134

    Article  CAS  Google Scholar 

  235. Wang E et al (2019) Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites. Compos Sci Technol 169:209–216

    Article  CAS  Google Scholar 

  236. Liu X et al (2015) Electro-active shape memory composites enhanced by flexible carbon nanotube/grapheneaerogels. J Mater Chem A 3(21):11641–11649

    Article  CAS  Google Scholar 

  237. Luo H et al (2016) Shape memory-based tunable resistivity of polymer composites. Appl Surf Sci 363:59–65

    Article  CAS  Google Scholar 

  238. Toncheva A et al (2018) Fast IR-actuated shape-memory polymers using in situ silver nanoparticle-grafted cellulose nanocrystals. ACS Appl Mater Interfaces 10:29933–29942

    Article  CAS  Google Scholar 

  239. Lu H, Huang WM, Leng J (2014) Functionally graded and self-assembled carbon nanofiber and boron nitride in nanopaper for electrical actuation of shape memory nanocomposites. Compos: Part B 62:1–4

    Article  CAS  Google Scholar 

  240. Lu H, Liang F, Gou J, Leng J (2015) Synergistic effect of self-assembled carbon nanofibers and hexagonal boron nitride for improved electro-activated polymeric shape memory nanocomposite. J Intell Mater Syst Struct 26(8):905–912

    Article  CAS  Google Scholar 

  241. Lu H, Gou J, Leng J, Du S (2011) Synergistic effect of carbon nanofiber and sub-micro filamentary nickel nanostrand on the shape memory polymer nanocomposite. Smart Mater Struct 20:035017

    Article  CAS  Google Scholar 

  242. Loeblein M et al (2018) Novel timed and self-resistive heating shape memory polymer hybrid for large area and energy efficient application. Carbon 139:626–634

    Article  CAS  Google Scholar 

  243. Lee S-H, Jung J-H, Oh I-K (2014) 3D networked graphene-ferromagnetic hybrids for fast shape memory polymers with enhanced mechanical stiffness and thermal conductivity. Small 10(19):3880–3886

    Article  CAS  Google Scholar 

  244. Scognamillo S et al (2012) Synthesis and characterization of nanocomposites of thermoplastic polyurethane with both graphene and graphene nanoribbon fillers. Polymer 53:4019–4024

    Article  CAS  Google Scholar 

  245. Zhou X et al (2018) Morphology and properties of shape memory thermoplastic polyurethane composites incorporating graphene-montmorillonite hybrids. J Appl Polym Sci 135(15):46149

    Article  CAS  Google Scholar 

  246. Huangfu Y et al (2019) Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos Sci Technol 169:70–75

    Article  CAS  Google Scholar 

  247. Teng C-C, Ma C-CM, Chiou K-C, Lee T-M, Shih Y-F (2011) Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites. Mater Chem Phys 126:722–728

    Article  CAS  Google Scholar 

  248. Kim K, Kim J (2018) Exfoliated boron nitride nanosheet/MWCNT hybrid composite for thermal conductive material via epoxy wetting. Compos B 140:9–15

    Article  CAS  Google Scholar 

  249. Potter KD (1999) The early history of the resin transfer moulding process for aerospace applications. Compos Part A 30:619–621

    Article  Google Scholar 

  250. Laurenzi S, Marchetti M (2012) Advanced composite materials by resin transfer molding for aerospace applications. In: Hu N (ed) Composites and their properties. IntechOpen, London, pp 197–226

    Google Scholar 

  251. Mouritz AP (ed) (2012) Introduction to aerospace materials, 1st edn. Woodhead Publishing Limited, Sawston

    Google Scholar 

  252. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575

    Article  CAS  Google Scholar 

  253. Fejős M, Molnár K, Karger-Kocsis J (2013) Epoxy/polycaprolactone systems with triple-shape memory effect: electrospun nanoweb with and without graphene versus co-continuous morphology. Materials 6:4489–4504

    Article  CAS  Google Scholar 

  254. Gao J et al (2018) Experimental determination of mechanical properties of a single-ply broken twill 1/3 weave reinforced shape memory polymer composite. Polym Test 69:100–106

    Article  CAS  Google Scholar 

  255. Jang JH et al (2016) Durability of carbon fiber reinforced shape memory polymer composites in space. Proc SPIE 9800:98000I

    Article  Google Scholar 

  256. Hong SB, Kim J-G, Nam Y-Y, Lee GH, Yu W-R (2015) Mechanical analysis of carbon fiber shape memory polymer composites. In: ASEM15, Incheon, Korea

  257. Qi B, Raju J, Kruckenberg T, Stanning R (1999) A resin film infusion process for manufacture of advanced composite structures. Compos Struct 47:471–476

    Article  Google Scholar 

  258. Antonucci V et al (2003) Resin flow monitoring in resin film infusion process. J Mater Process Technol 143–144:687–692

    Article  CAS  Google Scholar 

  259. Yourdkhani M, Li W, Baril-Gosselin S, Robitaille F, Hubertl P (2018) Carbon nanotube-reinforced carbon fibre-epoxy composites manufactured by resin film infusion. Compos Sci Technol 166:169–175

    Article  CAS  Google Scholar 

  260. Wang B et al (2018) Fabrication of an enriched graphene surface protection of carbon fiber/epoxy composites for lightning strike via a percolating-assisted resin. Compos Sci Technol 158:51–60

    Article  CAS  Google Scholar 

  261. Minsch N, Herrmann FH, Gereke T, Nocke A, Cherif C (2017) Analysis of filament winding processes and potential equipment technologies. Procedia CIRP 66:125–130

    Article  Google Scholar 

  262. Chen S, Chen Y, Zhang Z, Liu Y, Leng J (2014) Experiment and analysis of morphing skin embedded with shape memory polymer composite tube. J Intell Mater Syst Struct 25(16):2052–2059

    Article  Google Scholar 

  263. Everhart MC, Stahl J (2005) Reusable shape memory polymer mandrels. In: Proceedings on SPIE 5762, smart structures and materials 2005: industrial and commercial applications of smart structures technologies, San Diego, CA, USA

  264. Everhart MC, Nickerson DM, Hreha RD (2006) High-temperature reusable shape memory polymer mandrels. In: Proceedings on SPIE 6171, smart structures and materials 2006: industrial and commercial applications of smart structures technologies, San Diego, CA, USA

  265. Du Y, Liu LW, Chen FL, Liu YJ, Leng JS (2014) Design and manufacturing smart mandrels using shape memory polymer. In: ICCM2014, Cambridge, England

  266. Zhang L, Du H, Liu L, Liu Y, Leng J (2014) Analysis and design of smart mandrels using shape memory polymers. Compos: Part B 59:230–237

    Article  CAS  Google Scholar 

  267. Du H, Liu L, Zhang F, Leng J, Liu Y (2018) Shape retainability and reusability investigation of bottle-shaped SMP mandrel. Polym Test 69:325–331

    Article  CAS  Google Scholar 

  268. Du H et al (2015) Shape memory polymer S-shaped mandrel for composite air duct manufacturing. Compos Struct 133:930–938

    Article  Google Scholar 

  269. Khan W, Sharma R, Saini P (2016) Carbon nanotube-based polymer composites: synthesis, properties and applications. In: Berber M, Hafez IH (eds) Carbon nanotubes—current progress of their polymer composites. IntechOpen, London, pp 1–45

    Google Scholar 

  270. Sahoo NG, Rana S, Cho JW, Li L, Cha SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  CAS  Google Scholar 

  271. Saini P, Choudhary V (2013) Enhanced electromagnetic interference shielding effective-ness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J Nanopart Res 15:1415

    Article  CAS  Google Scholar 

  272. Saini P (2013) Electrical properties and electromagnetic interference shielding response of electrically conducting thermosetting nanocomposites. In: Mittal V (ed) Thermoset nanocomposites. Wiley-VCH Verlag, Hoboken, pp 211–237

    Chapter  Google Scholar 

  273. Ari GA, Aydin I (2008) Nanocomposites prepared by solution blending: microstructure and mechanical properties. J Macromol Sci Part B Phys 47:260–267

    Article  CAS  Google Scholar 

  274. Yang S-H, Jang H-J, Park N-J, Park D-H (2009) A study on the thermal and chemical properties of carbon nanotube reinforced nanocomposite in power cables. Trans Electri Electron Mater 10(6):217–221

    Article  Google Scholar 

  275. Lago E, Toth PS, Pugliese G, Pellegrini V, Francesco B (2016) Solution blending preparation of polycarbonate/graphene composite: boosting the mechanical and electrical properties. RSC Adv. 6(100):97931–97940

    Article  CAS  Google Scholar 

  276. Meng Z-Y et al (2017) Effect of different dimensional carbon nanoparticles on the shape memory behavior of thermotropic liquid crystalline polymer. Compos Sci Technol 138:8–14

    Article  CAS  Google Scholar 

  277. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  278. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  CAS  Google Scholar 

  279. Verma P, Saini P, Choudhary V (2015) Designing of carbon nanotube/polymer composites using melt recirculation approach: effect of aspect ratio on mechanical, electrical and EMI shielding response. Mater Des 88:269–277

    Article  CAS  Google Scholar 

  280. Potschke P, Bhattacharyya AR, Janke A, Pegel S (2005) Melt mixing as method to disperse carbon nanotubes into thermoplastic polymers. Fullerenes Nanotubes Carbon Nanostruct 13:211–224

    Article  CAS  Google Scholar 

  281. Mederic P, Razafinimaro T, Aubry T (2006) Influence of melt-blending conditions on structural, rheological, and interfacial properties of polyamide-12 layered silicate nanocomposites. Polym Eng Sci 46:986–994

    Article  CAS  Google Scholar 

  282. Su Q, Feng M, Zhang S, Jiang J, Yang M (2007) Melt blending of polypropylene-blend-polyamide 6-blend-organoclay systems. Polym Int 56:50–56

    Article  CAS  Google Scholar 

  283. Saini P (2015) Conjugated polymer-based blends, copolymers, and composites: synthesis, properties, and applications. In: Saini P (ed) Fundamentals of conjugated polymer blends, copolymers and composites: synthesis, properties and applications. Wiley, Hoboken, pp 1–118

    Chapter  Google Scholar 

  284. Abbasi A, Sadeghi GMM, Ghasemi I, Shahrousvand M (2018) Shape memory performance of green in situ polymerized nanocomposites based on polyurethane/graphene nanoplatelets: synthesis, properties, and cell behavior. Polym Compos 39:4020–4033

    Article  CAS  Google Scholar 

  285. Zhang R et al (2013) Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Compos Sci Technol 74:1–5

    Article  CAS  Google Scholar 

  286. Yoo HJ, Jung YC, Sahoo NG, Cho JW (2006) Polyurethane-carbon nanotube nanocomposites prepared by in-situ polymerization with electroactive shape memory. J Macromol Sci Part B: Phys 45:441–451

    Article  CAS  Google Scholar 

  287. Sahoo NG, Jung YC, Cho JW (2007) Electroactive shape memory effect of polyurethane composites filled with carbon nanotubes and conducting polymer. Mater Manuf Process 22:419–423

    Article  CAS  Google Scholar 

  288. Ahmad MB, Gharayebi Y, Salit MS, Hussein MZ, Shameli K (2011) Comparison of in situ polymerization and solution-dispersion techniques in the preparation of polyimide/montmorillonite (MMT) nanocomposites. Int J Mol Sci 12:6040–6050

    Article  CAS  Google Scholar 

  289. Yi DH, Yoo HJ, Cho JW (2015) Mechanical and photothermal shape memory properties of in situ polymerized hyperbranched polyurethane composites with functionalized graphene. Fibers Polym 16(8):1766–1771

    Article  CAS  Google Scholar 

  290. Zhao J et al (2013) A comparison between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites. Compos Part A 48:129–136

    Article  CAS  Google Scholar 

  291. Tibbits S (2014) 4D printing: multi-material shape change. Archit Des 84(1):116–121

    Google Scholar 

  292. Momeni F, Hassani SMM, Liu X, Ni J (2017) A review of 4D printing. Mater Des 122:42–79

    Article  CAS  Google Scholar 

  293. Qi HJ, Fang N, Ahn S-H (2017) Preface for the special issue of 4D printing. Int J Precis Eng Manuf-Green Technol 4(3):265–265

    Article  Google Scholar 

  294. Shin D-G, Kim T-H, Kim D-E (2017) Review of 4D printing materials and their properties. Int J Precis Eng Manuf-Green Technol 4(3):349–357

    Article  Google Scholar 

  295. Li X, Shang J, Wang Z (2017) Intelligent materials: a review of applications in 4D printing. Assem Autom 37(2):170–185

    Article  Google Scholar 

  296. Gardan J (2019) Smart materials in additive manufacturing: state of the art and trends. Virtual Phys Prototyp 14(1):1–18

    Article  Google Scholar 

  297. Castro NJ, Meinert C, Levett P, Hutmacher DW (2017) Current developments in multifunctional smart materials for 3D/4D bioprinting. Curr Opin Biomed Eng 2:67–75

    Article  Google Scholar 

  298. de Marco C, Pané S, Nelson BJ (2018) 4D printing and robotics. Sci Robot 3(18):eaau0449

    Article  Google Scholar 

  299. Gao B et al (2016) 4D bioprinting for biomedical applications. Trends Biotechnol 34(9):746–756

    Article  CAS  Google Scholar 

  300. Miao S et al (2017) 4D printing of polymeric materials for tissue and organ regeneration. Mater Today 20(10):577–590

    Article  CAS  Google Scholar 

  301. Ge Q, Qi HJ, Dunn ML (2013) Active materials by four-dimension printing. Appl Phys Lett 103:131901

    Article  CAS  Google Scholar 

  302. Wei H et al (2017) Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl Mater Interfaces 9:876–883

    Article  CAS  Google Scholar 

  303. Rosales CAG et al (2018) 3D printing of shape memory polymer (SMP)/carbon black (CB) nanocomposites with electro-responsive toughness enhancement. Mater Res Express 5:065704

    Article  CAS  Google Scholar 

  304. Scheithauer U et al (2017) Ceramic-based 4D components: additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by thermoplastic 3D printing (T3DP). Materials 10:1368

    Article  CAS  Google Scholar 

  305. Chen S, Zhang Q, Feng J (2017) 3D printing of tunable shape memory polymer blends. J Mater Chem C 5:8361–8365

    Article  CAS  Google Scholar 

  306. Abuzaid W, Alkhader M, Omari M (2018) Experimental analysis of heterogeneous shape recovery in 4d printed honeycomb structures. Polym Test 68:100–109

    Article  CAS  Google Scholar 

  307. Liu Y et al (2018) Shape memory behavior and recovery force of 4D printed laminated Miura-origami structures subjected to compressive loading. Compos B 153:233–242

    Article  CAS  Google Scholar 

  308. Zhang W et al (2018) Shape memory behavior and recovery force of 4D printed textile functional composites. Compos Sci Technol 160:224–230

    Article  CAS  Google Scholar 

  309. Yuan C, Wang T, Dunn ML, Qi HJ (2017) 3D printed active origami with complicated folding patterns. Int J Precis Eng Manuf-Green Technol 4(3):281–289

    Article  Google Scholar 

  310. Villacres J, Nobes D, Ayranci C (2018) Additive manufacturing of shape memory polymers: effects of print orientation and infill percentage on mechanical properties. Rapid Prototyp J 24(4):744–751

    Google Scholar 

  311. Choong YYC, Maleksaeedi S, Eng H, Wei J, Su P-C (2017) 4D printing of high performance shape memory polymer using stereolithography. Mater Des 126:219–225

    Article  CAS  Google Scholar 

  312. Ge Q et al (2016) Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep 6:31110

    Article  CAS  Google Scholar 

  313. Zarek M et al (2016) 3D printing of shape memory polymers for flexible electronic devices. Adv Mater 28:4449–4454

    Article  CAS  Google Scholar 

  314. Momeni F, Ni J (2018) Nature-inspired smart solar concentrators by 4D printing. Renew Energy 122:35–44

    Article  Google Scholar 

  315. Kim Y, Yuk H, Zhao R, Chester SA, Zhao X (2018) Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558:274–279

    Article  CAS  Google Scholar 

  316. Zhao R, Kim Y, Chester SA, Sharma P, Zhao X (2019) Mechanics of hard-magnetic soft materials. J Mech Phys Solids 124:244–263

    Article  CAS  Google Scholar 

  317. Butaud P et al (2015) Investigations on the frequency and temperature effects on mechanical properties of a shape memory polymer (Veriflex). Mech Mater 87:50–60

    Article  Google Scholar 

  318. Luo X, Mather PT (2009) Preparation and characterization of shape memory elastomeric composites. Macromolecules 42(19):7251–7253

    Article  CAS  Google Scholar 

  319. Luo X, Mather PT (2013) Design strategies for shape memory polymers. Curr Opin Chem Eng 2:103–111

    Article  Google Scholar 

  320. Takashima K et al (2014) Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire. Smart Mater Struct 23(12):125005

    Article  Google Scholar 

  321. Hearon K et al (2013) Electron beam crosslinked polyurethane shape memory polymers with tunable mechanical properties. Macromol Chem Phys 214(11):1258–1272

    Article  CAS  Google Scholar 

  322. Sujithra R, Srinivasan SM, Arockiarajan A (2015) Shape recovery studies for coupled deformations in an epoxy based amorphous shape memory polymers. Polym Test 48:1–6

    Article  CAS  Google Scholar 

  323. Yakacki CM et al (2008) Strong, tailored, biocompatible shape-memory polymer networks. Adv Funct Mater 18(16):2428–2435

    Article  CAS  Google Scholar 

  324. Volk BL, Lagoudas DC, Maitland DJ (2011) Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer. Smart Mater Struct 30(9):094004

    Article  CAS  Google Scholar 

  325. Liu Y, Lv H, Lan X, Leng J, Du S (2009) Review of electro-active shape-memory polymer composite. Compos Sci Technol 69:2064–2068

    Article  CAS  Google Scholar 

  326. Brown R, Singh K, Khan F (2017) Fabrication and vibration characterization of electrically triggered shape memory polymer beams. Polym Test 61:74–82

    Article  CAS  Google Scholar 

  327. Rogers N, Khan F (2013) Characterization of deformation induced changes to conductivity in an electrically triggered shape memory polymer. Polym Test 32:71–77

    Article  CAS  Google Scholar 

  328. Eisenhaure J, Kim S (2014) An internally heated shape memory polymer dry adhesive. Polymers 6:2274–2286

    Article  CAS  Google Scholar 

  329. Fei G, Li G, Wu L, Xia H (2012) A spatially and temporally controlled shape memory process for electrically conductive polymer–carbon nanotube composites. Soft Matter 8(19):5123–5126

    Article  CAS  Google Scholar 

  330. Luo H et al (2014) Multi-stimuli responsive carbon nanotube–shape memory polymeric composites. Mater Lett 137:385–388

    Article  CAS  Google Scholar 

  331. Peng Q et al (2016) Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application. Nanoscale 8(42):18042–18049

    Article  CAS  Google Scholar 

  332. Gong X, Liu L, Liu Y, Leng J (2016) An electrical-heating and self-sensing shape memory polymer composite incorporated with carbon fiber felt. Smart Mater Struct 25:035036

    Article  CAS  Google Scholar 

  333. Leng JS, Huang WM, Lan X, Liu YJ, Du SY (2008) Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. Appl Phys Lett 92:204101

    Article  CAS  Google Scholar 

  334. Wang P et al (2018) Low voltage driven electro-active shape memory composites with 3D AgNWs conductive networks. Mater Lett 220:297–300

    Article  CAS  Google Scholar 

  335. Yu Y-J, Infanger S, Grunlan MA, Maitland DJ (2015) Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites. J Appl Polym Sci 132(1):41226

    Article  CAS  Google Scholar 

  336. Zainal MA, Ali MSM (2016) Wireless shape memory polymer microactuator for implantable drug delivery application. In: 2016 IEEE EMBS conference on biomedical engineering and sciences (IECBES), Kuala Lumpur, pp 76–79

  337. Zainal MA, Ahmad A, Ali MSM (2017) Frequency-controlled wireless shape memory polymer microactuator for drug delivery application. Biomed Microdevices 19(1):8

    Article  CAS  Google Scholar 

  338. Gong T et al (2012) Remotely actuated shape memory effect of electrospun composite nanofibers. Acta Biomater 8:1248–1259

    Article  CAS  Google Scholar 

  339. Yu K, Westbrook KK, Kao PH, Leng J, Qi HJ (2012) Design considerations for shape memory polymer composites with magnetic particles. J Compodss Mater 47(1):51–63

    Article  CAS  Google Scholar 

  340. Buckley PR et al (2006) Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans Biomed Eng 53(10):2075–2083

    Article  Google Scholar 

  341. Hanzon DW, Yu K, Yakacki CM (2017) Activation mechanisms of shape-memory polymers. In: Andrew W (ed) Shape-memory polymer device design. Elsevier, Amsterdam

    Google Scholar 

  342. Leng J, Xuelian W, Liu Y (2009) Infrared light-active shape memory polymer filled with nanocarbon particles. J Appl Polym Sci 114(4):2455–2460

    Article  CAS  Google Scholar 

  343. Liu Y, Boyles JK, Genzer J, Dickey MD (2012) Self-folding of polymer sheets using local light absorption. Soft Matter 8(6):1764–1769

    Article  CAS  Google Scholar 

  344. Xiaohui X et al (2018) Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL)/multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Compos Sci Technol 168:255–262

    Article  CAS  Google Scholar 

  345. Fang T et al (2018) Preparation and assembly of five photoresponsive polymers to achieve complex light-induced shape deformations. Mater Des 144:129–139

    Article  CAS  Google Scholar 

  346. Zhang H, Zhao Y (2013) Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles. ACS Appl Mater Interfaces 5:13069–13075

    Article  CAS  Google Scholar 

  347. Xiao Z et al (2013) Shape matters: a gold nanoparticle enabled shape memory polymer triggered by laser irradiation. Part Part Syst Charact 30:338–345

    Article  CAS  Google Scholar 

  348. Mishra SR, Tracy JB (2018) Sequential actuation of shape-memory polymers through wavelength-selective photothermal heating of gold nanospheres and nanorods. ACS Appl Nano Mater 1:3063–3067

    Article  CAS  Google Scholar 

  349. Zheng Y, Li J, Lee E, Yang S (2015) Light-induced shape recovery of deformed shape memory polymer micropillar arrays with gold nanorods. RSC Adv 5(39):30495–30499

    Article  CAS  Google Scholar 

  350. Yao Y, Hoang PT, Liu T (2017) Laser stimulated shape memory polymer with inclusion of gold nanorod—effect of aspect ratio and critical role of on-resonance irradiation. J Mater Sci Technol 33:869–873

    Article  Google Scholar 

  351. Fang L et al (2017) Precise stimulation of near-infrared light responsive shape-memory polymer composites using upconversion particles with photothermal capability. Compos Sci Technol 152:190–197

    Article  CAS  Google Scholar 

  352. Li G, Fei G, Liu B, Xia H, Zhao Y (2014) Shape recovery characteristics for shape memory polymers subjected to high intensity focused ultrasound. RSC Adv 4:32701–32709

    Article  CAS  Google Scholar 

  353. Bhargava A, Peng K, Stieg J, Mirzaeifar R, Shahab S (2017) Ultrasound actuation of shape-memory polymer filaments; acoustic-thermoelastic modeling and testing. In: ASME. Smart materials, adaptive structures and intelligent systems, volume 2: modeling, simulation and control of adaptive systems; integrated system design and implementation; structural health monitoring, Utah, USA, 18–20 Sept 2017. https://doi.org/10.1115/smasis2017-3832

  354. Guo Z et al (2008) Strengthening and thermal stabilization of polyurethane nanocomposites with silicon carbide nanoparticles by a surface-initiated-polymerization approach. Compos Sci Technol 68:164–170

    Article  CAS  Google Scholar 

  355. Du H, Ren Z, Xu Y (2018) Microwave-induced shape-memory poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks chemically linked to SiC nanoparticles. Iran Polym J 27:621–628

    Article  CAS  Google Scholar 

  356. Du H et al (2015) Microwave-induced shape-memory effect of silicon carbide/poly(vinyl alcohol) composite. Sens Actuators A 228:1–8

    Article  CAS  Google Scholar 

  357. Yu K, Liu Y, Leng J (2014) Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Adv 4(6):2961–2968

    Article  CAS  Google Scholar 

  358. Yang B (2004) C M Lee C Li, and L Li W M Huang, “On the effects of moisture in a polyurethane shape memory polymer,” Smart Mater. Struct. 13:191

    CAS  Google Scholar 

  359. Huang WM, Yang B (2005) Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl Phys Lett 86:114105

    Article  CAS  Google Scholar 

  360. Gu X, Mather PT (2013) Water-triggered shape memory of multiblock thermoplastic polyurethanes (TPUs). RSC Adv 3:15783–15791

    Article  CAS  Google Scholar 

  361. Song L et al (2018) Water-induced shape memory effect of nanocellulose papers from sisal cellulose nanofibers with graphene oxide. Carbohyd Polym 179:110–117

    Article  CAS  Google Scholar 

  362. Bai Y, Chen X (2017) A fast water-induced shape memory polymer based on hydroxyethyl cellulose/graphene oxide composites. Compos Part A 103:9–16

    Article  CAS  Google Scholar 

  363. Lin G, Jiang Y, Jinlian H (2018) Bioinspired poly(vinyl alcohol)-silk hybrids: two-way water-sensitive shape-memory materials. Mater Today Commun 17:419–426

    Article  CAS  Google Scholar 

  364. Sessini V, Arrieta MP, Fernández-Torres A, Peponi L (2018) Humidity-activated shape memory effect on plasticized starch-based biomaterials. Carbohyd Polym 179:93–99

    Article  CAS  Google Scholar 

  365. Dong Y, Ni Q-Q, Fu Y (2015) Preparation and characterization of water-borne epoxy shape memory composites containing silica. Compos: Part A 72:1–10

    Article  CAS  Google Scholar 

  366. Luo H et al (2015) Shape memory-enhanced water sensing of conductive polymer composites. Mater Lett 161:189–192

    Article  CAS  Google Scholar 

  367. Feng X et al (2016) Dual responsive shape memory polymer/clay nanocomposites. Compos Sci Technol 129:53–60

    Article  CAS  Google Scholar 

  368. Chen MC et al (2007) Rapidly self-expandable polymeric stents with a shape-memory property. Biomacromolecules 8(9):2774–2780

    Article  CAS  Google Scholar 

  369. Reyes-Ortega F (2014) pH-responsive polymers: properties, synthesis and applications. In: Aguilar MR, Román JS (eds) Smart polymers and their applications. Woodhead Publishing, Sawston

    Google Scholar 

  370. Han X-J et al (2012) pH-Induced Shape-Memory Polymers. Macromol Rapid Commun 33:1055–1060

    Article  CAS  Google Scholar 

  371. Chen H et al (2014) Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym. Chem 5(17):5168–5174

    Article  CAS  Google Scholar 

  372. Song Q et al (2016) Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym. Chem. 7(9):1739–1746

    Article  CAS  Google Scholar 

  373. Haiyan D, Zhang J (2010) Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 6:3370–3376

    Article  CAS  Google Scholar 

  374. Zhao Y, Wang CC, Huang WM, Purnawali H (2013) Ethanol induced shape recovery and swelling in poly(methylmethacrylate) and applications in fabrication of microlens array. Adv Sci Technol 77:354–358

    Article  CAS  Google Scholar 

  375. Zhao Y, Wang CC, Huang WM, Purnawali H (2011) Ethanol induced shape recovery and swelling in poly(methylmethacrylate) and applications in fabrication of poly(methyl methacrylate) in stimulus-responsive shape recovery. Appl Phys Lett 99:131911

    Article  CAS  Google Scholar 

  376. Zelzer M, Ulijn RV (2014) Enzyme-responsive polymers: properties, synthesis and applications. In: Aguilar MR, Roman JS (eds) Smart polymers and their applications. Woodhead Publishing, Sawston

    Google Scholar 

  377. Buffington SL et al (2018) Enzymatically triggered shape memory polymers. Acta Biomater. https://doi.org/10.1016/j.actbio.2018.11.031

    Article  Google Scholar 

  378. Cui J, Del Campo A (2014) Photo-responsive polymers: properties, synthesis and applications. In: Aguilar MR, Roman JS (eds) Smart polymers and their applications. Woodhead Publishing, Sawston

    Google Scholar 

  379. Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Article  CAS  Google Scholar 

  380. Habault D, Zhang H, Zhao Y (2013) Light-triggered self-healing and shape-memory polymers. Chemical Society Review 42(17):244–7256

    Article  CAS  Google Scholar 

  381. Wu L, Jin C, Sun X (2011) Synthesis, properties, and light-induced shape memory effect of multiblock polyester urethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 12(1):235–241

    Article  CAS  Google Scholar 

  382. Jiang D et al (2019) Triple-stimuli responsive shape memory effect of novel polyolefin elastomer/lauric acid/carbon black nanocomposites. Compos Sci Technol 169:45–51

    Article  CAS  Google Scholar 

  383. Wang L et al (2013) Multi-stimuli sensitive shape memory poly(vinyl alcohol)-graft-polyurethane. Polym Chem 4(16):4461–4468

    Article  CAS  Google Scholar 

  384. Liu Y, Li Y, Yang G, Zheng X, Zhou S (2015) Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl Mater Interfaces 7:4118–4126

    Article  CAS  Google Scholar 

  385. Chan BQY, Heng SJW, Liow SS, Zhang K, Loh XJ (2017) Dual-responsive hybrid thermoplastic shape memory polyurethane. Mater Chem Front 1(4):767–779

    Article  CAS  Google Scholar 

  386. Zhuo H, Mei Z, Chen H, Chen S (2018) Chemically-crosslinked zwitterionic polyurethanes with excellent thermally-induced multi-shape memory effect and moisture-induced shape memory effect. Polymer 148:119–126

    Article  CAS  Google Scholar 

  387. Zhang Y, Jiang X, Ronglan W, Wang W (2016) Multi-stimuli responsive shape memory polymers synthesized by using reaction-induced phase separation. J Appl Polym Sci 133(24):43534

    Google Scholar 

  388. Safranski DL, Griffis JC (2017) Applications of shape-memory polymers. In: Andrew W (ed) Shape-memory polymer device design. Elsevier, Amsterdam, pp 189–217

    Chapter  Google Scholar 

  389. Santo L, Quadrini F, Accettura A, Villadei W (2014) Shape memory composites for self-deployable structures in aerospace applications. Procedia Eng 88:42–47

    Article  Google Scholar 

  390. Dao TD, Ha NS, Goo NS, Yu W-R (2018) Design, fabrication, and bending test of shape memory polymer composite hinges for space deployable structures. J Intell Mater Syst Struct 29(8):1560–1574

    Article  Google Scholar 

  391. Liu T et al (2018) Integrative hinge based on shape memory polymer composites: material, design, properties and application. Compos Struct 206:164–176

    Article  Google Scholar 

  392. Li F et al (2016) Modal analyses of deployable truss structures based on shape memory polymer composites. Int J Appl Mech 8(7):1640009

    Article  Google Scholar 

  393. Zhang R, Guo X, Liu Y, Leng J (2014) Theoretical analysis and experiments of a space deployable truss structure. Compos Struct 112:226–230

    Article  Google Scholar 

  394. Concilio A et al (eds) (2018) Morphing wing technologies: large commercial aircraft and civil helicopters, 1st edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  395. Sun J, Guan Q, Liu Y, Leng J (2016) Morphing aircraft based on smart materials and structures: a state-of-the-art review. J Intell Mater Syst Struct 27(17):2289–2312

    Article  CAS  Google Scholar 

  396. Sun J, Liu Y, Leng J (2015) Mechanical properties of shape memory polymer composites enhanced by elastic fibers and their application in variable stiffness morphing skins. J Intell Mater Syst Struct 26(15):2020–2027

    Article  CAS  Google Scholar 

  397. Leng J, Yu K, Sun J, Liu Y (2015) Deployable morphing structure based on shape memory polymer. Aircr Eng Aerosp Technol: Int J 87:218–223

    Article  Google Scholar 

  398. Yahia L (ed) (2015) Shape memory polymers for biomedical applications, 1st edn. Woodhead Publishing, Sawston

    Google Scholar 

  399. Zhao W, Liu L, Zhang F, Leng J, Liu Y (2019) Shape memory polymers and their composites in biomedical applications. Mater Sci Eng C 97:864–883

    Article  CAS  Google Scholar 

  400. Xie H et al (2018) Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers. Biomaterials 164:11–21

    Article  CAS  Google Scholar 

  401. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676

    Article  Google Scholar 

  402. Fan J, Li G (2017) High performance and tunable artificial muscle based on two-way shape memory polymer. RSC Adv 7(2):1127–1136

    Article  CAS  Google Scholar 

  403. Wu Y et al (2014) Two-way shape memory polymer with “switch–spring” composition by interpenetrating polymer network. J Mater Chem A 2(44):18816–18822

    Article  CAS  Google Scholar 

  404. Jia H, Gu Shu-Ying, Chang K (2018) 3D printed self-expandable vascular stents from biodegradable shape memory polymer. Adv Polym Technol 37(8):3222–3228

    Article  CAS  Google Scholar 

  405. Maitland DJ et al (2007) Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms. J Biomed Opt 12(3):030504

    Article  Google Scholar 

  406. Landsman TL et al (2016) Design and verification of a shape memory polymer peripheral occlusion device. J Mech Behav Biomed Mater 63:195–206

    Article  CAS  Google Scholar 

  407. Boyle AJ et al (2017) In vitro performance of a shape memory polymer foam-coated coil embolization device. Med Eng Phys 49:56–62

    Article  Google Scholar 

  408. Rodriguez JN et al (2014) In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model. J Biomed Mater Res A 102(5):1231–1242

    Article  CAS  Google Scholar 

  409. Yakacki CM, Gall K (2010) Shape-memory polymers for biomedical applications. Adv Polym Sci 226:147–175

    Article  CAS  Google Scholar 

  410. Metzger MF, Wilson TS, Schumann D, Matthews DL, Maitland DJ (2002) Mechanical properties of mechanical actuator for treating ischemic stroke. Biomed Microdevice 4(2):89–96

    Article  Google Scholar 

  411. Maitland DJ, Metzger MF, Schumann D, Lee A, Wilson TS (2002) Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg Med 30:1–11

    Article  Google Scholar 

  412. Wischke C, Behl M, Lendlein A (2013) Drug-releasing shape-memory polymers—the role of morphology, processing effects, and matrix degradation. Expert Opin Drug Deliv 10(9):1193–1205

    Article  CAS  Google Scholar 

  413. Wischke C, Neffe AT, Lendlein A (2010) Controlled drug release from biodegradable shape-memory polymers. Adv Polym Sci 226:177–205

    Article  CAS  Google Scholar 

  414. Wischke C, Neffe AT, Steuer S, Lendlein A (2009) Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. J Controll Release 138:243–250

    Article  CAS  Google Scholar 

  415. Xiao Y, Zhou S, Wang L, Zheng X, Gong T (2010) Crosslinked poly(e-caprolactone)/poly(sebacic anhydride) composites combining biodegradation, controlled drug release and shape memory effect. Compos: Part B 41:537–542

    Article  CAS  Google Scholar 

  416. Nagahama K, Ueda Y, Ouchi T, Ohya Y (2009) Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release. Biomacromolecules 10:1789–1794

    Article  CAS  Google Scholar 

  417. Jaworska J et al (2015) Shape-memory bioresorbable terpolymer composite with antirestenotic drug. J Appl Polym Sci 132(17):41902

    Article  CAS  Google Scholar 

  418. Yu W et al (2017) Near-infrared light triggered and separable microneedles for transdermal delivery of metformin in diabetic rats. J. Mater. Chem. B 5:9507–9513

    Article  CAS  Google Scholar 

  419. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  CAS  Google Scholar 

  420. Peterson GI, Dobrynin AV, Becker ML (2017) Biodegradable shape memory polymers in medicine. Adv Healthcare Mater 6(21):1700694

    Article  CAS  Google Scholar 

  421. Wong Y, Kong J, Widjaja LK, Venkatraman SS (2014) Biomedical applications of shape-memory polymers: how practically useful are they? Sci China Chem 57(4):476–489

    Article  CAS  Google Scholar 

  422. Balk M, Behl M, Wischke C, Zotzmann J, Lendlein A (2016) Recent advances in degradable lactide-based shape-memory polymers. Adv Drug Deliv Rev 107:136–152

    Article  CAS  Google Scholar 

  423. Bao M et al (2014) Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering. ACS Appl Mater Interfaces 6:2611–2621

    Article  CAS  Google Scholar 

  424. Zhang D et al (2014) A bioactive ‘‘self-fitting’’ shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta Biomater 10:4597–4605

    Article  CAS  Google Scholar 

  425. Xie R et al (2018) Self-fitting shape memory polymer foam inducing bone regeneration: a rabbit femoral defect study. BBA Gen Subj 1862:936–945

    Article  CAS  Google Scholar 

  426. Liu X et al (2014) Delivery of growth factors using a smart porous nanocomposite Scaffold to repair a mandibular bone defect. Biomacromolecules 15:1019–1030

    Article  CAS  Google Scholar 

  427. Baker RM, Tseng L-F, Iannolo MT, Oest ME, Henderson JH (2016) Self-deploying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: a mouse femoral segmental defect study. Biomaterials 76:388–398

    Article  CAS  Google Scholar 

  428. Sullins VF et al (2014) A novel biodegradable device for intestinal lengthening. J Pediatr Surg 49:109–113

    Article  Google Scholar 

  429. Fisher JG et al (2015) Extraluminal distraction enterogenesis using shape-memory polymer. J Pediatr Surg 50:938–942

    Article  Google Scholar 

  430. Chakraborty JN, Dhaka PK, Sethi AV, Arif M (2017) Technology and application of shape memory polymers in textiles. Res J Text Appar 21(2):86–100

    Article  Google Scholar 

  431. Ji F et al (2006) Smart polymer fibers with shape memory effect. Smart Mater Struct 15:1547–1554

    Article  CAS  Google Scholar 

  432. Jinlian H, Chung S, Li Y (2007) Characterization about the shape memory behaviour of woven fabrics. Trans Inst Meas Control 29(3/4):301–319

    Google Scholar 

  433. Liu Y, Chung A, Hu J, Lv J (2007) Shape memory behavior of SMPU knitted fabric. J Zhejiang Univ Sci A 8(5):830–834

    Article  Google Scholar 

  434. Chan Vili YYF (2007) Investigating smart textiles based on shape memory materials. Text Res J 77(5):290–300

    Article  CAS  Google Scholar 

  435. Meng Q, Hu J, Zhu Y, Jing L, Liu Y (2007) Morphology, phase separation, thermal and mechanical property differences of shape memory fibres prepared by different spinning methods. Smart Mater Struct 62:1192

    Article  CAS  Google Scholar 

  436. Sáenz-Pérez M et al (2018) Novel shape-memory polyurethane fibers for textile applications. Text Res J. https://doi.org/10.1177/0040517518760756

    Article  Google Scholar 

  437. Hu J, Mondal S (2006) Study of shape memory polymer films for breathable textiles. In: Mattila HR (ed) Intelligent textiles and clothing. Woodhead Publishing, Sawston, pp 143–164

    Chapter  Google Scholar 

  438. Midha VK, Mukhopadhyay A (2016) Smart breathable coatings for textiles. In: Hu J (ed) Active coatings for smart textiles. Woodhead Publishing, Sawston, pp 81–111

    Chapter  Google Scholar 

  439. Jahid MA et al (2018) Fabric coated with shape memory polyurethane and its properties. Polymers 10(6):681

    Article  CAS  Google Scholar 

  440. (2019, January) Mitsubishi Cooperation Fashion Co., Ltd. https://www.mcf.co.jp/en/service/diaseries/diaplex.html. Accessed 9 Oct 2019

  441. Hu J, Lu J (2014) Smart polymers for textile applications. In: Aguilar MR, Román JS (eds) Smart polymers and their applications. Woodhead Publishing, Cambridge, pp 437–475

    Chapter  Google Scholar 

  442. Li G, Meng H (2015) Overview of crack self-healing. In: Li G, Meng H (eds) Recent advances in smart self-healing polymers and composites. Woodhead Publishing, Sawston, pp 1–19

    Google Scholar 

  443. Scheiner M, Dickens TJ, Okoli O (2016) Progress towards self-healing polymers for composite structural applications. Polymer 83:260–282

    Article  CAS  Google Scholar 

  444. Blaiszik BJ et al (2010) Self-healing polymers and composites. Annu Rev Mater Res 49:179–211

    Article  CAS  Google Scholar 

  445. Ji G, Zhang P, Nji J, John M, Li G (2015) Shape memory polymer-based self-healing composites. In: Li G, Meng H (eds) Recent advances in smart self-healing polymers and composites. Woodhead Publishing, Sawston, pp 293–363

    Chapter  Google Scholar 

  446. Meng H, Zhang P, Ajisafe O, Li G (2015) Self-healing materials with embedded shape memory polymer fibers and wires. In: Li G, Meng H (eds) Recent advances in smart self-healing polymers and composites. Woodhead Publishing, Sawston, pp 365–395

    Chapter  Google Scholar 

  447. Du P, Wang X (2015) Reversible cross-linking polymer-based self-healing materials. In: Li G, Meng H (eds) Recent advances in smart self-healing polymers and composites. Woodhead Publishing, Sawston, pp 159–179

    Chapter  Google Scholar 

  448. Wypych G (2017) Mechanisms of self-healing. In: Wypych G (ed) Self-healing materials: principles and technology. ChemTec Publishing, pp 7–33

  449. Bekas DG, Tsirka K, Baltzis D, Paipetis AS (2016) Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques. Compos B 87:92–119

    Article  CAS  Google Scholar 

  450. Li G (2014) Self-healing composites: shape memory polymer based structures, 1st edn. Wiley, West Sussex

    Google Scholar 

  451. Zhang P, Li G (2016) Advances in healing-on-demand polymers and polymer composites. Prog Polym Sci 57:32–63

    Article  CAS  Google Scholar 

  452. Wang Y, Pham DT, Ji C (2015) Self-healing composites: a review. Cogent Eng 2(1):1075686

    Article  Google Scholar 

  453. Mauldin TC, Kessler MR (2010) Self-healing polymers and composites. Int Mater Rev 55(6):317–346

    Article  CAS  Google Scholar 

  454. Mphahlele K, Ray SS, Kolesnikov A (2017) Self-healing polymeric composite material design, failure analysis and future outlook: a review. Polymers 9(10):535

    Article  CAS  Google Scholar 

  455. Zhang Q, Liu L, Pan C, Li D (2018) Review of recent achievements in self-healing conductive materials and their applications. J Mater Sci 53:27–46. https://doi.org/10.1007/s10853-017-1388-8

    Article  CAS  Google Scholar 

  456. Nji J, Li G (2010) A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation. Smart Mater Struct 19:035007

    Article  CAS  Google Scholar 

  457. Yoon JA et al (2012) Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45:142–149

    Article  CAS  Google Scholar 

  458. Li G, Zhang P (2013) A self-healing particulate composite reinforced with strain hardened short shape memory polymer fibers. Polymer 54:5075–5086

    Article  CAS  Google Scholar 

  459. Wei H, Yao Y, Liu Y, Leng J (2015) A dual-functional polymeric system combining shape memory with self-healing properties. Compos B 83:7–13

    Article  CAS  Google Scholar 

  460. Wang L et al (2016) Shape memory composite (SMC) self-healing coatings for corrosion protection. Prog Org Coat 97:261–268

    Article  CAS  Google Scholar 

  461. Huang Y et al (2018) Triple-action self-healing protective coatings based on shape memory polymers containing dual-function microspheres. ACS Appl Mater Interfaces 10:23369–23379

    Article  CAS  Google Scholar 

  462. Yang H et al (2016) Molecular dynamics studying on welding behavior in thermosetting polymers due to bond exchange reactions. RSC Adv. 6(27):22476–22487

    Article  CAS  Google Scholar 

  463. Lu L, Fan J, Li G (2016) Intrinsic healable and recyclable thermoset epoxy based on shape memory effect and transesterification reaction. Polymer 105(22):10–18

    Article  CAS  Google Scholar 

  464. Luo H et al (2018) Multi-stimuli triggered self-healing of the conductive shape memory polymer composites. Pigm Resin Technol 47(1):1–6

    Article  CAS  Google Scholar 

  465. Li G, Ajisafe O, Meng H (2013) Effect of strain hardening of shape memory polymer fibers on healing efficiency of thermosetting polymer composites. Polymer 54:920–928

    Article  CAS  Google Scholar 

  466. Zhang M, Zhao F, Luo Y (2019) Self-healing mechanism of microcracks on waterborne polyurethane with tunable disulfide bond contents. ACS Omega 4:1703–1714

    Article  CAS  Google Scholar 

  467. Ponnamma D et al (2017) Energy harvesting: breakthrough technologies through polymer composites. In: Ponnamma D, Sadasivuni KK, Cabibihan J-J, Al-Maadeed MAA (eds) Smart polymer nanocomposites: energy harvesting, self-healing and shape memory applications. Springer, Cham, pp 1–42

    Chapter  Google Scholar 

  468. Wang Y, Yang Y, Wang ZL (2017) Triboelectric nanogenerators as flexible power sources. NPJ Flex Electron 1:10

    Article  CAS  Google Scholar 

  469. Wang ZL (2014) Triboelectric nanogenerators as new energy technology and self-powered sensors—principles, problems and perspectives. Faraday Discuss 176:447–458

    Article  CAS  Google Scholar 

  470. Jing Q, Kar-Narayan S (2018) Nanostructured polymer-based piezoelectric and triboelectric materials and devices for energy harvesting applications. J Phys D Appl Phys 51:303001

    Article  CAS  Google Scholar 

  471. Lee JH, Hinchet R, Kim SK, Kim S, Kim S-W (2015) Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ Sci 8(12):3605–3613

    Article  CAS  Google Scholar 

  472. Liu R et al (2018) Shape memory polymers for body motion energy harvesting and self-powered mechanosensing. Adv Mater 30(8):1705195

    Article  CAS  Google Scholar 

  473. Li W, Liu Y, Leng J (2017) Programmable and shape-memorizing information carriers. ACS Appl Mater Interfaces 9:44792–44798

    Article  CAS  Google Scholar 

  474. Xie H et al (2018) Integrating shape-memory technology and photo-imaging on a polymer platform for a high-security information storage medium. J Mater Chem C 6(39):10422–10427

    Article  CAS  Google Scholar 

  475. Wang L-L et al (2009) Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47:1905–1910

    Article  CAS  Google Scholar 

  476. Jin X, Ni Q-Q, Natsuki T (2011) Composites of multi-walled carbon nanotubes and shape memory polyurethane for electromagnetic interference shielding. J Compos Mater 45(24):2547–2554

    Article  CAS  Google Scholar 

  477. Nazir A et al (2018) Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J Mater Sci 53:8699–8719. https://doi.org/10.1007/s10853-018-2122-x

    Article  CAS  Google Scholar 

  478. Menon AV, Madras G, Bose S (2018) Shape memory polyurethane nanocomposites with porous architectures for enhanced microwave shielding. Chem Eng J 352:590–600

    Article  CAS  Google Scholar 

  479. Zhou G et al (2016) Fast triggering of shape memory polymers using an embedded carbon nanotube sponge network. Sci Rep 6:24148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The scholarship to the first author by China Scholarship Council is highly appreciated. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11632005 and 11672086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liwu Liu or Jinsong Leng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melly, S.K., Liu, L., Liu, Y. et al. Active composites based on shape memory polymers: overview, fabrication methods, applications, and future prospects. J Mater Sci 55, 10975–11051 (2020). https://doi.org/10.1007/s10853-020-04761-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04761-w

Navigation