Skip to main content

Advertisement

Log in

Synthesis and properties of multifunctional microencapsulated phase change material for intelligent textiles

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microencapsulated phase change materials (MEPCMs) have been widely used in many fields as thermal energy storage materials. This study reported a novel MEPCM with the functions of thermal energy storage, photothermal conversion, ultraviolet (UV) shielding, and superhydrophobicity, which was particularly suitable for intelligent textiles. The microcapsules based on an n-eicosane core and a CuO-doped polyurea shell with hierarchical structure were fabricated through a one-step interfacial polymerization. The morphology of the capsules and the hierarchical shell structure were identified through scanning and transmission electron microscopy. Thermal analysis indicated that the microcapsules had a high latent heat of 162.3 J/g and demonstrated a high thermal reliability. These microcapsules achieved a good photothermal conversion capability and can reduce UV radiation by approximately 30%. The water contact angle of the MEPCM was over 148° and showed a good superhydrophobic property. Cotton fabric coated with the prepared MEPCM was investigated. Results showed that it achieved a high phase change enthalpy of 36.8 J/g, an effective thermoregulation capability, and a large contact angle of 141.6°.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kasaeian A, Bahrami L, Pourfayaz F et al (2017) Experimental studies on the applications of PCMs and nano-PCMs in buildings: a critical review. Energy Build 154:96–112. https://doi.org/10.1016/j.enbuild.2017.08.037

    Article  Google Scholar 

  2. Zhou C, Wu S (2019) Medium- and high-temperature latent heat thermal energy storage: material database, system review, and corrosivity assessment. Int J Energy Res 43:621–661. https://doi.org/10.1002/er.4216

    Article  CAS  Google Scholar 

  3. Lin Y, Jia Y, Alva G, Fang G (2018) Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sustain Energy Rev 82:2730–2742. https://doi.org/10.1016/j.rser.2017.10.002

    Article  CAS  Google Scholar 

  4. Shao X, Lin J, Teng H et al (2020) Solar energy materials and solar cells hydroxyl group functionalized graphene oxide nanosheets as additive for improved erythritol latent heat storage performance: a comprehensive evaluation on the benefits and challenges. Sol Energy Mater Sol Cells 215:110658. https://doi.org/10.1016/j.solmat.2020.110658

    Article  CAS  Google Scholar 

  5. Luo D, Wei F, Shao H et al (2018) Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials. J Mater Sci 53:15500–15513. https://doi.org/10.1007/s10853-018-2722-5

    Article  CAS  Google Scholar 

  6. Huang X, Zhu C, Lin Y, Fang G (2019) Thermal properties and applications of microencapsulated PCM for thermal energy storage: a review. Appl Therm Eng 147:841–855. https://doi.org/10.1016/j.applthermaleng.2018.11.007

    Article  Google Scholar 

  7. Alva G, Lin Y, Liu L, Fang G (2017) Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review. Energy Build 144:276–294. https://doi.org/10.1016/j.enbuild.2017.03.063

    Article  Google Scholar 

  8. Yuan P, Zhang P, Liang T et al (2019) Effects of functionalization on energy storage properties and thermal conductivity of graphene/n-octadecane composite phase change materials. J Mater Sci 54:1488–1501. https://doi.org/10.1007/s10853-018-2883-2

    Article  CAS  Google Scholar 

  9. Qiu Z, Ma X, Li P et al (2017) Micro-encapsulated phase change material (MPCM) slurries: characterization and building applications. Renew Sustain Energy Rev 77:246–262. https://doi.org/10.1016/j.rser.2017.04.001

    Article  Google Scholar 

  10. Ho CJ, Siao CR, Yan WM (2014) Thermal energy storage characteristics in an enclosure packed with MEPCM particles: an experimental and numerical study. Int J Heat Mass Transf 73:88–96. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.056

    Article  CAS  Google Scholar 

  11. Trivedi GVN, Parameshwaran R (2020) Microencapsulated phase change material suspensions for cool thermal energy storage. Mater Chem Phys 242:122519. https://doi.org/10.1016/j.matchemphys.2019.122519

    Article  CAS  Google Scholar 

  12. Kuznik F, Virgone J, Johannes K (2011) In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renew Energy 36:1458–1462. https://doi.org/10.1016/j.renene.2010.11.008

    Article  CAS  Google Scholar 

  13. Tanuwijava AO, Ho CJ, Lai CM, Huang CY (2013) Numerical investigation of the thermal management performance of MEPCM modules for PV applications. Energies 6:3922–3936. https://doi.org/10.3390/en6083922

    Article  CAS  Google Scholar 

  14. Iqbal K, Sun D (2014) Development of thermo-regulating polypropylene fibre containing microencapsulated phase change materials. Renew Energy 71:473–479

    Article  CAS  Google Scholar 

  15. Zhao CY, Zhang GH (2011) Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications. Renew Sustain Energy Rev 15:3813–3832. https://doi.org/10.1016/j.rser.2011.07.019

    Article  CAS  Google Scholar 

  16. Haghighat F, Hosseini Ravandi SA, Nasr Esfahany M, Valipouri A (2018) A comprehensive study on optimizing and thermoregulating properties of core–shell fibrous structures through coaxial electrospinning. J Mater Sci 53:4665–4682. https://doi.org/10.1007/s10853-017-1856-1

    Article  CAS  Google Scholar 

  17. Peng Y, Cui Y (2020) Advanced textiles for personal thermal management and energy. Joule 4:724–742. https://doi.org/10.1016/j.joule.2020.02.011

    Article  CAS  Google Scholar 

  18. Prajapati DG, Kandasubramanian B (2020) A review on polymeric-based phase change material for thermo-regulating fabric application. Polym Rev 60:389–419. https://doi.org/10.1080/15583724.2019.1677709

    Article  CAS  Google Scholar 

  19. Nandiyanto ABD, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol 22:1–19. https://doi.org/10.1016/j.apt.2010.09.011

    Article  CAS  Google Scholar 

  20. Lu S, Shen T, Xing J et al (2018) Preparation and characterization of cross-linked polyurethane shell microencapsulated phase change materials by interfacial polymerization. Mater Lett 211:36–39. https://doi.org/10.1016/j.matlet.2017.09.074

    Article  CAS  Google Scholar 

  21. Ma Y, Sun S, Li J, Tang G (2014) Preparation and thermal reliabilities of microencapsulated phase change materials with binary cores and acrylate-based polymer shells. Thermochim Acta 588:38–46. https://doi.org/10.1016/j.tca.2014.04.023

    Article  CAS  Google Scholar 

  22. Alkan C, Sari A, Karaipekli A (2011) Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Convers Manag 52:687–692. https://doi.org/10.1016/j.enconman.2010.07.047

    Article  CAS  Google Scholar 

  23. Zhang H, Wang X, Wu D (2010) Silica encapsulation of n-octadecane via sol-gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J Colloid Interface Sci 343:246–255. https://doi.org/10.1016/j.jcis.2009.11.036

    Article  CAS  Google Scholar 

  24. Döğüşcü DK, Damlıoğlu Y, Alkan C (2019) Poly(methyl methacrylate-co-ethylene glycole dimethacrylate-co-acrylamide)/n-octadecane microparticles for thermal energy storage. Sol Energy Mater Sol Cells 193:253–258. https://doi.org/10.1016/j.solmat.2019.01.021

    Article  CAS  Google Scholar 

  25. Al-Shannaq R, Farid M, Al-Muhtaseb S, Kurdi J (2015) Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials. Sol Energy Mater Sol Cells 132:311–318. https://doi.org/10.1016/j.solmat.2014.08.036

    Article  CAS  Google Scholar 

  26. Cai Y, Gao C, Xu X et al (2012) Solar energy materials and solar cells electrospun ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy. Sol Energy Mater Sol Cells 103:53–61. https://doi.org/10.1016/j.solmat.2012.04.031

    Article  CAS  Google Scholar 

  27. Tahan Latibari S, Mehrali M, Mehrali M et al (2013) Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method. Energy 61:664–672. https://doi.org/10.1016/j.energy.2013.09.012

    Article  CAS  Google Scholar 

  28. Cao L, Tang F, Fang G (2014) Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials. Sol Energy Mater Sol Cells 123:183–188. https://doi.org/10.1016/j.solmat.2014.01.023

    Article  CAS  Google Scholar 

  29. Wang T, Jiang Y, Huang J, Wang S (2018) High thermal conductive paraffin/calcium carbonate phase change microcapsules based composites with different carbon network. Appl Energy 218:184–191. https://doi.org/10.1016/j.apenergy.2018.02.108

    Article  CAS  Google Scholar 

  30. Jiang M, Xiaoqing S, Jianjun X, Guangdou Y (2008) Preparation of a new thermal regulating fiber based on PVA and paraffin. Sol Energy Mater Sol Cells 92:1657–1660

    Article  CAS  Google Scholar 

  31. Nelson G (2002) Application of microencapsulation in textiles. Int J Pharm 242:55–62

    Article  CAS  Google Scholar 

  32. Wu J, Hu R, Zeng S et al (2020) Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl Mater Interfaces 12:19015–19022. https://doi.org/10.1021/acsami.0c02300

    Article  CAS  Google Scholar 

  33. Lu Y, Xiao X, Fu J et al (2019) Novel smart textile with phase change materials encapsulated core–sheath structure fabricated by coaxial electrospinning. Chem Eng J 355:532–539. https://doi.org/10.1016/j.cej.2018.08.189

    Article  CAS  Google Scholar 

  34. Nejman A, Cieślak M, Gajdzicki B et al (2014) Methods of PCM microcapsules application and the thermal properties of modified knitted fabric. Thermochim Acta 589:158–163. https://doi.org/10.1016/j.tca.2014.05.037

    Article  CAS  Google Scholar 

  35. Nejman A, Gromadzínska E, Kamínska I, Ciéslak M (2020) Assessment of thermal performance of textile materials modified with PCM microcapsules using combination of DSC and infrared thermography methods. Molecules. https://doi.org/10.3390/molecules25010122

    Article  Google Scholar 

  36. Nejman A, Cieślak M (2017) The impact of the heating/cooling rate on the thermoregulating properties of textile materials modified with PCM microcapsules. Appl Therm Eng 127:212–223. https://doi.org/10.1016/j.applthermaleng.2017.08.037

    Article  CAS  Google Scholar 

  37. Su Y, Zhu W, Tian M et al (2020) Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing. Appl Therm Eng 174:115340. https://doi.org/10.1016/j.applthermaleng.2020.115340

    Article  CAS  Google Scholar 

  38. Zhang W, Hao S, Zhao D et al (2020) Preparation of PMMA/SiO2 PCM microcapsules and its thermal regulation performance on denim fabric. Pigment Resin Technol. https://doi.org/10.1108/PRT-01-2020-0003

    Article  Google Scholar 

  39. Zhou J, Zhao J, Cui Y, Cheng W (2020) Synthesis of bifunctional nanoencapsulated phase change materials with nano-TiO2 modified polyacrylate shell for thermal energy storage and ultraviolet absorption. Polym Int 69:140–148. https://doi.org/10.1002/pi.5924

    Article  CAS  Google Scholar 

  40. Liu H, Wang X, Wu D (2019) Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review. Sustain Energy Fuels 3:1091–1149. https://doi.org/10.1039/c9se00019d

    Article  CAS  Google Scholar 

  41. Maithya OM, Li X, Feng X, et al. (2020) Microencapsulated phase change material via Pickering emulsion stabilized by graphene oxide for photothermal conversion. J Mater Sci 55:7731–7742. https://doi.org/10.1007/s10853-020-04499-5

    Article  CAS  Google Scholar 

  42. Zhang X, Wang X, Wu D (2016) Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness. Energy 111:498–512. https://doi.org/10.1016/j.energy.2016.06.017

    Article  CAS  Google Scholar 

  43. Gao F, Wang X, Wu D (2017) Solar energy materials and solar cells design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide. Sol Energy Mater Sol Cells 168:146–164. https://doi.org/10.1016/j.solmat.2017.04.026

    Article  CAS  Google Scholar 

  44. Zhao J, Yang Y, Li Y et al (2017) Microencapsulated phase change materials with TiO2-doped PMMA shell for thermal energy storage and UV-shielding. Sol Energy Mater Sol Cells 168:62–68. https://doi.org/10.1016/j.solmat.2017.04.014

    Article  CAS  Google Scholar 

  45. Sun K, Liu H, Wang X, Wu D (2019) Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell. Appl Energy 237:549–565. https://doi.org/10.1016/j.apenergy.2019.01.043

    Article  CAS  Google Scholar 

  46. Sun Z, Zhao L, Wan H et al (2020) Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors. Chem Eng J 396:125317. https://doi.org/10.1016/j.cej.2020.125317

    Article  CAS  Google Scholar 

  47. Liu Z, Chen Z, Yu F (2018) Microencapsulated phase change material modified by graphene oxide with different degrees of oxidation for solar energy storage. Sol Energy Mater Sol Cells 174:453–459. https://doi.org/10.1016/j.solmat.2017.09.034

    Article  CAS  Google Scholar 

  48. Yang L, Yuan Y, Zhang N, et al. (2020) Photo-to-thermal conversion and energy storage of lauric acid/expanded graphite composite phase change materials. Int J Energy Res 44, pp. 8555–8566. https://doi.org/10.1002/er.5542

    Article  CAS  Google Scholar 

  49. Du X, Qiu J, Deng S, et al. (2020) Flame-retardant and form-stable phase change composites based on black phosphorus nanosheets/cellulose nanofiber aerogels with extremely high energy storage density and superior solar-thermal conversion efficiency. J Mater Chem A 8:14126–14134. https://doi.org/10.1039/D0TA05078D

    Article  Google Scholar 

  50. Sahu K, Bisht A, Kuriakose S, Mohapatra S (2019) Two-dimensional CuO–ZnO nanohybrids with enhanced photocatalytic performance for removal of pollutants. J Phys Chem Solids. https://doi.org/10.1016/j.jpcs.2019.109223

    Article  Google Scholar 

  51. Shehayeb S, Deschanels JL (2019) Thin polymeric CuO film from EPD designed for low temperature photothermal absorbers. Electrochim Acta 305:295–303. https://doi.org/10.1016/j.electacta.2019.03.078

    Article  CAS  Google Scholar 

  52. Hong Z, Cao Y, Deng J (2002) A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater Lett 52:34–38. https://doi.org/10.1016/S0167-577X(01)00361-5

    Article  CAS  Google Scholar 

  53. Chai L, Wang X, Wu D (2015) Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness. Appl Energy 138:661–674. https://doi.org/10.1016/j.apenergy.2014.11.006

    Article  CAS  Google Scholar 

  54. Sirota EB, Singer DM (1995) Phase transitions among the rotator phases of the normal alkanes. J Chem Phys 26:10873–10882

    Google Scholar 

  55. He F, Wang X, Wu D (2014) New approach for sol–gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor. Energy 67:223–233

    Article  CAS  Google Scholar 

  56. Yu S, Wang X, Wu D (2014) Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation. Appl Energy 114:632–643

    Article  CAS  Google Scholar 

  57. Al RM, Sharif M, Khodadadi JM (2017) Transfer Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage. Int J Heat Mass Transf 107:697–711. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.059

    Article  CAS  Google Scholar 

  58. Ping Lyu, Lin Jing MM (2018) Research on seawater corrosion resistance of spray polyurea protective coating research on seawater corrosion resistance of spray polyurea protective coating. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/436/1/012017

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China [51876045] and the Department of Science and Technology of Guangdong Province [2017TX04N371].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1431 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhu, X., Wang, H. et al. Synthesis and properties of multifunctional microencapsulated phase change material for intelligent textiles. J Mater Sci 56, 2176–2191 (2021). https://doi.org/10.1007/s10853-020-05399-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05399-4

Navigation