Skip to main content
Log in

Temperature-dependent mechanical properties of ZrC and HfC from first principles

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to gain insight into the effect of elevated temperature on the mechanical performance of zirconium carbide (ZrC) and hafnium carbide (HfC), their temperature-dependent elastic constants have been systematically studied. For both ZrC and HfC, isoentropic \(C_{11}\) gradually decreases with the increase in temperature, while the values of \(C_{44}\) and \(C_{12}\) of both are nearly temperature-independent. Temperature effects on modulus of elasticity, Poisson’s ratio, elastic anisotropy, hardness, and fracture toughness are further explored and discussed. A good agreement is observed between the predicted isoentropic Young’s modulus E and the available experiments for ZrC. Using quasistatic approximation can underestimate the decline rate of \(C_{11}\), bulk modulus B, shear modulus G, and Young’s modulus E at high temperatures, especially above 298 K. This suggests the importance of the vibrational component of the free energy to calculate mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Toth L (2014) Transition metal carbides and nitrides. Elsevier, Amsterdam

    Google Scholar 

  2. Opeka MM, Talmy IG, Wuchina EJ, Zaykoski JA, Causey SJ (1999) Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc 19(13–14):2405

    CAS  Google Scholar 

  3. Chang YHR, Yoon TL (2020) Effects of nitrogen addition and growth condition on the enhanced mechanical properties of transition metal carbides TMC (TM= Zr, Hf). Ceram Int 46(1):1124–1136

    Google Scholar 

  4. Upadhya K, Yang J, Hoffman W (1997) Advanced materials for ultrahigh temperature structural applications above 2000C. Am Ceram Soc Bull 76(12):51

    CAS  Google Scholar 

  5. Savino R, Fumo MDS, Silvestroni L, Sciti D (2008) Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials. J Eur Ceram Soc 28(9):1899

    CAS  Google Scholar 

  6. Cedillos-Barraza O, Manara D, Boboridis K, Watkins T, Grasso S, Jayaseelan DD, Konings RJ, Reece MJ, Lee WE (2016) Investigating the highest melting temperature materials: a laser melting study of the TaC–HfC system. Sci Rep 6:37962

    CAS  Google Scholar 

  7. Sheindlin M, Falyakhov T, Petukhov S, Valyano G, Vasin A (2018) Recent advances in the study of high-temperature behaviour of non-stoichiometric TaCx, HfCx and ZrCx carbides in the domain of their congruent melting point. Adv Appl Ceram 117(sup1):s48

    CAS  Google Scholar 

  8. Hong QJ, van de Walle A (2015) Prediction of the material with highest known melting point from ab initio molecular dynamics calculations. Phys Rev B 92(2):020104

    Google Scholar 

  9. Katoh Y, Vasudevamurthy G, Nozawa T, Snead LL (2013) Properties of zirconium carbide for nuclear fuel applications. J Nucl Mater 441(1–3):718

    CAS  Google Scholar 

  10. Chang R, Graham LJ (1966) Low-temperature elastic properties of ZrC and TiC. J Appl Phys 37(10):3778

    CAS  Google Scholar 

  11. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864

    Google Scholar 

  12. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133

    Google Scholar 

  13. Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon Press, Oxford

    Google Scholar 

  14. Wallace DC (1998) Thermodynamics of crystals. Courier Corporation, North Chelmsford

    Google Scholar 

  15. Varshni Y (1970) Temperature dependence of the elastic constants. Phys Rev B 2(10):3952

    Google Scholar 

  16. Shrivastava U (1980) Temperature dependence of the elastic constants of alkali halides. Phys Rev B 21(6):2602

    CAS  Google Scholar 

  17. Garber J, Granato A (1975) Theory of the temperature dependence of second-order elastic constants in cubic materials. Phys Rev B 11(10):3990

    Google Scholar 

  18. Singh B, Chandra H (2005) Temperature dependence of elastic moduli and isobaric volume expansion of ionic solids. Phys B Condens Matter 358(1–4):1

    CAS  Google Scholar 

  19. Wang Y, Wang J, Zhang H, Manga V, Shang S, Chen L, Liu Z (2010) A first-principles approach to finite temperature elastic constants. J Phys Condens Matter 22(22):225404

    CAS  Google Scholar 

  20. Shang SL, Zhang H, Wang Y, Liu ZK (2010) Temperature-dependent elastic stiffness constants of \(\alpha\)-and \(\theta\)-Al\(_2\)O\(_3\) from first-principles calculations. J Phys Condens Matter 22(37):375403

    Google Scholar 

  21. Shao T, Wen B, Melnik R, Yao S, Kawazoe Y, Tian Y (2012) Temperature dependent elastic constants for crystals with arbitrary symmetry: combined first principles and continuum elasticity theory. J Appl Phys 111(8):083525

    Google Scholar 

  22. Liu Q, He Q (2007) Elastic constants for various classes of solids at high temperature. Proc Phys Soc A 112(1):69

    CAS  Google Scholar 

  23. Li W, Kou H, Zhang X, Ma J, Li Y, Geng P, Wu X, Chen L, Fang D (2019) Temperature-dependent elastic modulus model for metallic bulk materials. Mech Mater 139:103194

    Google Scholar 

  24. Thurston RN (1964) Physical acoustics principles and methods, physical acoustics principles and methods 1:

  25. Wallace DC (1970) Solid state physics. Academic Press, New York, p 301

    Google Scholar 

  26. Zhao J, Winey J, Gupta Y (2007) First-principles calculations of second-and third-order elastic constants for single crystals of arbitrary symmetry. Phys Rev B 75(9):094105

    Google Scholar 

  27. Anderson OL, Anderson OL, Lee PA (1995) Equations of state of solids for geophysics and ceramic science, vol 31. Oxford University Press, Oxford

    Google Scholar 

  28. Moruzzi V, Janak J, Schwarz K (1988) Calculated thermal properties of metals. Phys Rev B 37(2):790

    CAS  Google Scholar 

  29. Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scr Mater 108:1

    CAS  Google Scholar 

  30. Vočadlo L (2007) Ab initio calculations of the elasticity of iron and iron alloys at inner core conditions: evidence for a partially molten inner core? Earth Planet Sci Lett 254(1–2):227

    Google Scholar 

  31. Jing Q, Wu CY, Gong HR (2018) Phase transition, thermodynamic and elastic properties of ZrC. Trans NonFerrous Met Soc China 28(12):2520

    Google Scholar 

  32. Papadimitriou I, Utton C, Tsakiropoulos P (2015) Ab initio investigation of the intermetallics in the Nb-Sn binary system. Acta Mater 86:23

    CAS  Google Scholar 

  33. Papadimitriou I, Utton C, Tsakiropoulos P (2015) Ab initio investigation of the Nb–Al system. Comput Mater Sci 107:116

    CAS  Google Scholar 

  34. Liu L, Wu X, Wang R, Li W, Liu Q (2015) First principle study on the temperature dependent elastic constants, anisotropy, generalized stacking fault energy and dislocation core of NiAl and FeAl. Comput Mater Sci 103:116

    CAS  Google Scholar 

  35. Chong X, Jiang Y, Zhou R, Feng J (2016) The effects of ordered carbon vacancies on stability and thermo-mechanical properties of V 8 C 7 compared with VC. Sci Rep 6(1):1

    CAS  Google Scholar 

  36. Shang S, Kim D, Zacherl C, Wang Y, Du Y, Liu Z (2012) Effects of alloying elements and temperature on the elastic properties of dilute Ni-base superalloys from first-principles calculations. J Appl Phys 112(5):053515

    Google Scholar 

  37. Wallace DC (1972) Thermodynamics of crystals. Wiley, New York

    Google Scholar 

  38. Brugger K (1964) Thermodynamic definition of higher order elastic coefficients. Phys Rev 133(6A):A1611

    Google Scholar 

  39. Davies G (1974) Effective elastic moduli under hydrostatic stress-I. Quasi-harmonic theory. J Phys Chem Solids 35(11):1513

    CAS  Google Scholar 

  40. Wasserman E, Stixrude L, Cohen RE (1996) Thermal properties of iron at high pressures and temperatures. Phys Rev B 53(13):8296

    CAS  Google Scholar 

  41. Malica C, Dal Corso A (2020) Quasi-harmonic temperature dependent elastic constants: applications to silicon, aluminum, and silver. J Phys Condens Matter 32(31):315902

    CAS  Google Scholar 

  42. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953

    Google Scholar 

  43. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758

    CAS  Google Scholar 

  44. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Google Scholar 

  45. Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso AD, de Gironcoli S, Delugas P, DiStasio RA Jr, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko HY, Kokalj A, Kkbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen HV, Roza AO, Paulatto L, Ponc S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys Condens Matter 29(46):465901

    CAS  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    CAS  Google Scholar 

  47. Methfessel M, Paxton A (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40(6):3616

    CAS  Google Scholar 

  48. Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73(2):515

    CAS  Google Scholar 

  49. Lawson A, Butt D, Richardson J, Li J (2007) Thermal expansion and atomic vibrations of zirconium carbide to 1600 K. Philos Mag 87(17):2507

    CAS  Google Scholar 

  50. Smith H, Gläser W (1970) Phonon spectra in TaC and HfC. Phys Rev Lett 25(23):1611

    CAS  Google Scholar 

  51. Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc A 65(5):349

    Google Scholar 

  52. Baranov V, Knyazev V, Korostin O (1973) The temperature dependence of the elastic constants of nonstoichiometric zirconium carbides. Strength Mater 5(9):1074

    Google Scholar 

  53. Pierson H (1996) Carbides of group IV: titanium, zirconium, and hafnium carbides. Handbook of refractory carbides and nitrides, pp 55–80

  54. Vinet P, Rose JH, Ferrante J, Smith JR (1989) Universal features of the equation of state of solids. J Phys Condens Matter 1(11):1941

    CAS  Google Scholar 

  55. Born M (1940) Mathematical proceedings of the cambridge philosophical society, vol 36. Cambridge University Press, Cambridge, pp 160–172

    Google Scholar 

  56. Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90(22):224104

    Google Scholar 

  57. Tian Y, Xu B, Zhao Z (2012) Microscopic theory of hardness and design of novel superhard crystals. Int J Refract Met Hard Mater 33:93

    CAS  Google Scholar 

  58. Mazhnik E, Oganov AR (2019) A model of hardness and fracture toughness of solids. J Appl Phys 126(12):125109

    Google Scholar 

  59. Niu H, Niu S, Oganov AR (2019) Simple and accurate model of fracture toughness of solids. J Appl Phys 125(6):065105

    Google Scholar 

  60. Liu Y, Jiang Y, Zhou R, Feng J (2014) Simple and accurate model of fracture toughness of solids. J Alloys Compd 582:500

    CAS  Google Scholar 

  61. Weber W (1973) Lattice dynamics of transition-metal carbides. Phys Rev B 8(11):5082

    CAS  Google Scholar 

  62. Yao H, Ouyang L, Ching WY (2007) Ab initio calculation of elastic constants of ceramic crystals. J Am Ceram Soc 90(10):3194

    CAS  Google Scholar 

  63. Råsander M, Moram M (2015) On the accuracy of commonly used density functional approximations in determining the elastic constants of insulators and semiconductors. J Chem Phys 143(14):144104

    Google Scholar 

  64. Piskunov S, Heifets E, Eglitis R, Borstel G (2004) Bulk properties and electronic structure of SrTiO\(_3\), BaTiO\(_3\), PbTiO\(_3\) perovskites: an ab initio HF/DFT study. Comput Mater Sci 29(2):165

    CAS  Google Scholar 

  65. Pham HH, Williams ME, Mahaffey P, Radovic M, Arroyave R, Cagin T (2011) Finite-temperature elasticity of fcc Al: atomistic simulations and ultrasonic measurements. Phys Rev B 84(6):064101

    Google Scholar 

  66. Jiang C, Srinivasan S, Caro A, Maloy S (2008) Structural, elastic, and electronic properties of Fe\(_3\)C from first principles. J Appl Phys 103(4):043502

    Google Scholar 

  67. Pugh S (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45(367):823

    CAS  Google Scholar 

  68. Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O (1998) Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi\(_2\). J Appl Phys 84(9):4891

    CAS  Google Scholar 

  69. Ashby MF, Cebon D (1993) Materials selection in mechanical design. J Phys IV 3(C7):C7

    Google Scholar 

  70. Neuman EW, Hilmas GE (2014) Mechanical properties of zirconium-diboride based UHTCs. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgements

J. M. M. acknowledges startup support from Washington State University and the Department of Physics and Astronomy thereat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. McMahon.

Additional information

Handling Editor: Avinash Dongare.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5314 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., McMahon, J.M. Temperature-dependent mechanical properties of ZrC and HfC from first principles. J Mater Sci 56, 4266–4279 (2021). https://doi.org/10.1007/s10853-020-05416-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05416-6

Navigation